GENETICS OF PHENOTYPIC STABILITY IN A DIALLEL CROSS
OF INDIAN MUSTARD /Brassica juncea L. Coss/

#### S.S.Badwal, K.S.Labana, R.S.Rana, M.L.Gupta

Department of Plant Breeding Punjab Agricultural University Ludhiana-141 004, India

#### Abstract

Stability parameters, viz. mean, regression coefficients and deviations from regression estimated for genotypes resulting from a 10 parent half diallel studied over four unpredictable environments were subjected combining ability analysis. The variance due to non additive effects for the linear response was higher than the additive variance for seed yield and other component traits. The additive variance for non-linear response was higher than the non-additive variance for seed yield plant height, secondary branches, main shoot length, and on main shoot, whereas, for primary branches, pod length, seeds per pod and stem thickness, non-additive variance was high. Four parental lines, RS 3, RL 18, P Rai 219 and P 16-13 showed high gca effects on the stability parameters "b" for seed yield and its 4-5 component characters excluding at least 3 characters varying for each stable parent. The component characters which exhibited plasticity were secondary branches, main shoot length, pods on main shoot, pod length and seeds per pod. Instability of some yield components in a particular genotype seemed to contribute towards stability of seed yield. Five crosses, RS 3 x P Rai 219. RS 3 x P 16-13. M 590 x P 16-13 M 160 x P 16-13, BR 13 x Varuna exhibited high sca effects on stability of yield and 2-3 yield components. These crosses were combinations of high x high or high x average stable parents, suggesting thereby the genetic control of stability. The four parental lines and their crosses which exhibited high stability also possessed high mean performance for yield and its component traits giving an evidence that phenotypic stability and high performance <u>per</u> <u>se</u> are under the same genetic control.

## Introduction

In recent years, the understanding of genetic control of phenotypic stability of performance in various crop species has caught the attention of geneticists and plant breeders. In Indian mustard, genetic information on stability of performance for seed yield and its component traits is very scanty. The findings of such an investigation would prove highly fruitful in the development of fairly stable mustard cultivars with high performance per se. Large scale cultivation of such varieties over a wide range of environmental conditions in the Indian continent is expected to meet the challenge of boosting productivity. This type of breakthrough in varietal front coupled with improved agronomic and plant protection technology in rapeseed and mustard would in turn lead to self-reliance in oilseeds and an answer to check the drain on foreign exchange of about rupees one thousand crores used every year for importing edible oils.

## Materials and methods

Ten parental lines namely, RL 18, BR 13, Varuna, M 160, RS 3, T 6342, KR 5610, M 590, P 16-13 and Pant Rai 219 were crossed in all possible combinations, excluding reciprocals. The resultant 55 progenies /10 parents + 45  $F_1$ 's/were studied at two locations /Ludhiana and Gurdaspur/ for two years i.e. 1977-78 and 1978-79,

These experiments represented four environments and were sown by 20th October each year in each of the environment. The material was sown in randomised block design with four replications in one row plots of 2.25 m in length with a row to row and hill to hill spacings of 30 cm and 15 cm respectively. The recommended package of practices were followed to raise the experimental material in each environment. Ten plants were randomly chosen from each row for recording observations. The data on individual plant

basis were recorded for plant height /m/, number of primary branches, number of secondary branches, main shoot length, number of pods on main shoot, pod length /cm/, stem thickness, number of seeds per pod and seed yield. The data were averaged to single plant basis. The statistical analyses for genotype x environment interaction and stability were carried out according to the models of Eberhart and Russell /1966/. Combining ability analyses of regression coefficients and deviation mean squares of 55 values each were carried out using Method-1 and Model-1 of Griffing /1956/.

#### Results and discussion

The results of combining ability analyses of regression coefficients /b/ and the deviations from regression  $/s^2d_1/2$ obtained from 10 selected parental lines and their 45 F<sub>1</sub> progenies have been utilized to understand the genetics of stability of seed yield and its components traits in Indian mustard. The mean squares due to general combining ability /GCA/ in respect of "b" estimates were highly significant for the traits studied i.e. seed yield, plant height, primary branches, secondary branches, main shoot length, pods on main shoot, pod length, seeds per pod and stem thickness. The SCA mean squares were not significant for seed yield and plant height, whereas, these were highly significant for the rest of the yield components indicating thereby the importance of additive and non additive gene effects in the expression of linear response of the genotypes for various traits except seed yield and plant height for which only additive gene effects seem to be controlling the inheritance of linear response. A comparison of the estimated variances, however, gave a clear picture regarding the role of additive and non additive gene effects governing the linear response of the genotypes. The ratio of  $\sigma^2 s_{ij} / \sigma^2 g_i$  revealed that the non additive portion showed little edge over the additive gene effects governing the linear response of the genotypes for all the traits.

The GCA and SCA mean squares for  $S^2d_i$  were highly significant for all the traits. The ratio of  $G^2s_{ij}/G^2g_i$  showed that for primary branches, pod length, seeds per pod and stem thickness, the non-additive portion of genetic variance for  $S^2d_i$  was high, whereas, for seed yield, plant height, secondary branches, main shoot length and pods on main shoot, the additive variance was higher.

From the perusal of Table 3, it was revealed that the parental lines, RS 3, RL 18, P Rai 219 and P 16-13 had high GCA effects on the linear response and also recorded high performance per se for seed yield and important yield components. The performance per se of the 55 genotypes /10 parents + 45 Fis/ exhibited a highly significant positive correlation with the linear response "b" of the genotypes for seed yield, primary branches, pod length, seeds per pod and stem thickness. The linear response of seed yield was observed to have highly significant correlation with the linear response of plant height, primary branches, secondary branches and pod length /Badwal et al. 1983/. They further reported the predominance of linearity in the parental lines for seed yield and plant height. Similar observations were made for primary branches, secondary branches and pod length in the  $F_1$  progenies of 45 diallel crosses. These results suggested that performance per se for these characters could be precisely predicted. The variation in gca effects of the component characters, of the stable parental lines, RS 3, RL 18, P Rai 219 and P 16-13, further suggested that the component characters like secondary branches, main shoot length, pods on main shoot, pod length and seeds per pod seemed to possess plasticity leading to instability of combining ability in at least 2-3 component characters which contributed to the stability of performance in seed yield. It may be inferred that plant height, primary branches, secondary branches and pod length served as homeostatic devices for imparting stability to yielding ability of the parental lines and their  $F_1$  progenies. Badwal et al.

/1986/ reported that these 4 parental lines possessed high GCA in respect of their performance for seed yield and other important yield components. A significantly positive relationship between gca effects and performance per se for yield and other important component traits was also observed in this material.

In Table 2, 10 crosses showing high sca effects on the linear response in order of merit have been presented. It was observed that these crosses involved parental lines which had high or average general combining ability for seed yield and some important yield components. Five crosses, RS 3 x P Rai 219, M 590 x P 16-13, M 160 x P16-13, RS 3  $\times$  P 16-13 and BR 13  $\times$  Varuna, were the high specific crosses for the linear response and were the combinations of high x high or average x high general combiners. These crosses also possessed high sca effects on at least three important yield components. Variation in the sca effects of the component traits in different crosses /Table 2/ also substantiate the compensating mechanism for imparting stability to yielding ability. These findings suggest the genetic control of stability in Indian mustard. Similar observations on genetic control of stability in wheat were made by Bains and Gupta /1972/ and Talukdar and Bains /1982/. The foregoing discussion of the results clearly indicate that the phenotypic stability and the performance per se in Indian mustard are under the same genetic control. The results of the present investigation led to the understanding of genetics of phenotypic stability of seed yield and its component traits in Indian mustard, which would be of vital utility in manipulation of the breeding materials for the development of stable cultivars with high yield potential.

# <del>References</del>

Badwal S.S., P.K.Gupta, K.S.Labana, 1983. Proc. 6th Intl. Rapeseed Conference, Paris, pp. 540-545.

Badwal S.S., P.K.Gupta, K.S.Labana, 1986. Crop Improv. 13, p.p. 86-91. Bains K.S., V.P.Gupta, 1972. Indian J. Genet. 32,306-312. Griffing B., 1956. J. Biol. Sci. 9, 463-493. Eberhart S.A., W.A.Russell, 1966. Crop Sci. 6, 36-40. Talukdar P., K.S.Bains, 1982. Z.Pflanz. 89, 197-205.

| 1                                     |                                     |                                                                                                   | _               | -                      |                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 1                    |                      |                          |                                              |                            |                        |                                                                                                  | -   |
|---------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------|-----------------|------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------|--------------------------|----------------------------------------------|----------------------------|------------------------|--------------------------------------------------------------------------------------------------|-----|
| Stability                             | 1115                                | Source of                                                                                         |                 |                        |                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9 8 11                 | 3 d u 8              | 20 54                    | 7- 7- 10 m m m m m m m m m m m m m m m m m m |                            |                        |                                                                                                  | *** |
| ersm                                  | perametera                          | veristion                                                                                         | 9               | Seed                   | Plant<br>height              | Primary<br>branches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.5                    |                      | Main<br>Shoot<br>length  | Pods on<br>main<br>shoot                     | Pod<br>length              | Seeds<br>per<br>por    | Stem<br>thick-                                                                                   |     |
| Regrescoeff                           | Regression<br>coefficients<br>/b/   | goa<br>sca<br>Error<br>Variances                                                                  | 9<br>395        | 0,87<br>0,08<br>0,07   | 1,9125<br>0,20<br>0,16       | 0,09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | 0.46xx 0<br>0.21xx 0 | 0,14<br>0,08<br>0,01     | 0,0<br>0,0<br>0,0                            | 2.02<br>1.43<br>0.17       | 0.03                   | 0000                                                                                             |     |
|                                       |                                     | 6g1<br>G#11<br>6'811]6'81                                                                         |                 | 0,96                   | 0,95                         | 0,00,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,0000 | 0,97                   |                      | 0,78                     | 0,83<br>0,99<br>1,19                         | 0,69<br>0,94<br>1,36       | 0,79                   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      |     |
| Devist<br>from<br>regres              | Deviations<br>from<br>regression    | goa<br>goa<br>goa<br>Error<br>Variances                                                           | 945<br>395      | 255.9 xx<br>128,9 xx   | 407,5 xx<br>423,4 xx<br>33,9 | 0,0<br>0,0<br>0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5276.9E<br>7066.7E     |                      | 831,6m<br>366,1m<br>69,2 | 136,5 xx<br>99,0 xx<br>11,4                  | 0,50 XX<br>0,49 XX<br>0,04 | 2,26EX<br>1,72<br>0,18 | 0,13<br>0,02*                                                                                    |     |
| 2<br>0<br>1                           | _                                   | Gg1<br>61811<br>61811 681                                                                         | 111             | 0,80<br>0,16<br>0,20   | 0,18<br>0,02<br>0,11         | 0,99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00,00                  |                      | 0,82<br>0,06<br>0,07     | 0,73                                         | 0,67<br>0,98<br>1,46       | 0,72                   | 0<br>0<br>1<br>0<br>1<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |     |
| z z z z z z z z z z z z z z z z z z z | <sup>K</sup> P ≤ 0,05;<br>2. CROSSI | 0,051 XP 0,01<br>CROSSES WITH HIGH SPECIFIC COMBINING ABILITY EFFECTS FOR REGRESSION COEFFICIENTS | 01<br>GR SP     | BCIFIC CO              | MBINING                      | ABILIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Y EFFECTS              | POR RE               | GRESSIC                  | N COEFFIC                                    | CIENTS                     |                        |                                                                                                  |     |
| S S S                                 | Seed                                | च्य<br>-                                                                                          | Plant<br>1ght   | Primary<br>branches    | Secondary                    | dery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Main shoot<br>length   |                      | Pode on<br>main shoot    | Pod<br>length                                | Seeds per<br>pod           | <del></del>            | Stem                                                                                             |     |
| 1 2                                   | RS 3 x<br>P Ra 1 2 1 9              | . 28 P4                                                                                           | 590x<br>Rai 219 | R3 3 x<br>P Ra1 219    | RL 18                        | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RL 18 x<br>P 16-13     | M 160 x<br>KR 5610   |                          | RI 18 x<br>RS 3                              | RS 3 x<br>P Pa1 219        | אַה                    | 16-13 x<br>Ra1 219                                                                               |     |
| 2.<br>FE                              | M 590 x<br>P 16-13                  | M 160 x<br>I 6342                                                                                 | H <sub>N</sub>  | P 16-13 x<br>P Ra1 219 | x RL 18x<br>9 P Ra1 219      | 219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M 590 x<br>P 16-13     | M 590 x<br>P 16-13   |                          | I 6342<br>M 590                              | I 6342 x<br>P Red 219      | 풀                      | 590 x<br>16-13                                                                                   |     |
|                                       | M 160 x<br>P 16 13                  | M 160 x<br>RS 3                                                                                   | H               | M 160 x<br>P 16-13     | RS 3 x<br>I 6342             | ΗŅ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M 160 x<br>KR 5610     | M 160<br>P Rai       | x<br>219                 | H 160 x<br>P 16-13                           | Varuna 1<br>RS 3           | * RL                   | RL 18 x<br>P 16-13                                                                               |     |
| HD                                    | BH 13 x<br>Vertune                  | RL 18<br>RS 3                                                                                     | H               | BR 13 x<br>Varuna      | Veruns<br>RS 3               | × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BR 13 x<br>Varuna      | BR 13 x<br>Varuna    |                          | BR 13 x<br>Verune                            | BR 13 x<br>Varuna          | BR 13<br>Varun         | BR 13 x<br>Varuna                                                                                |     |
| 5.<br>F                               | RS 3 x<br>P 16-13                   | RS 3 x<br>P 16-13                                                                                 | *£              | RL 18 x                | RS 3 ₹ P 16-13               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BR 13 x<br>M 160       | RS 3 x<br>I 6342     |                          | RS 3 x<br>M 590                              | I 6342 x                   |                        | RS 3 x<br>P 16-13                                                                                |     |
| E                                     | BK 13 x<br>M 160                    | BR 13<br>KR 56                                                                                    | 13 ×<br>5610    | M 590 x<br>P Ra1 219   | > 11                         | alci<br>∺                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | KR 5610 x<br>P Ra1 219 | RL 18<br>BR 13       | H                        | BR 13 x<br>H 160                             | BR 13 X<br>M 160           | BR 13                  | 13 ×                                                                                             |     |
| × 32                                  | KR 5610 3                           | x 88 160 x                                                                                        | H               | Verune x               | I 6342<br>KR 5610            | 10,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M 590 x<br>P Ra1 219   | E Z                  | ¥ 01                     | KR 5610 x<br>P Ra1 219                       | P 16-13<br>P Ra1 219       | RS                     | 3.8<br>x                                                                                         |     |
|                                       | RL 18 X<br>M 590                    | RL 18<br>M 590                                                                                    | н               | KR 5610 x<br>P Rai 219 | R RL 18                      | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Verune x<br>RS 3       | BR 13<br>RS 3        | н                        | M 590 x<br>P Rai 219                         | RL 18 x                    | RI.                    | , 18 x<br>590                                                                                    |     |
| > *                                   | Varuna x<br>KR 5610                 | Varuna<br>RS 3                                                                                    | H<br>es         | Varuna x<br>M 590      | Varuna<br># 590              | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RL 18 x<br>P Ra1 219   | Varuna<br>RS 3       | ×                        | RL 18 x<br>Varuna                            | Varuna 1<br>1 6342         | x № 160                | 160 x<br>56 10                                                                                   |     |
| 5<br>7 4                              | KK 5610<br>P 16-13                  | BR 13 x<br>P 16-13                                                                                | ×С              | KR 5610                | x KR 5610<br>P 16-13         | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RS 3x<br>KR 5610       | Varuna<br>P 16-13    | ×                        | RL 18 x<br>P 16-13                           | KR 5610<br>P 16-13         | X BR                   | 13 x<br>16-13                                                                                    |     |
| P. 22.4                               |                                     | \$ 3                                                                                              |                 | H I                    | ' 11                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 1                    | 1 1                  | 1                        | Ħ.                                           | Ħ.                         |                        | 11 11                                                                                            |     |
| •                                     | 1                                   |                                                                                                   | -               |                        |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        | -                    |                          |                                              |                            |                        |                                                                                                  |     |

Table 1. ANALYSES OF VARIANCE FOR COMBINING ABILITY OF STABILITY PARAMETERS

TABLE S. CRIMERAL EURBINING ABILLIY EFFECTS OF RECRESSION CORFFICTINIS AND DEVIATIONS THEM HECRESSION

| Rean              |         |         |              | 100         | THE PARTY OF THE P | =        | Primary branches | 200    | 5      | ACCOMMON A DEBTACHES | Ches         |
|-------------------|---------|---------|--------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------|--------|--------|----------------------|--------------|
|                   | ۵       | ۶,۹     | <b>K</b> ean | ۵           | , p. s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>1</b> | ۵                | , P. S | a<br>S | ۵                    | p,s          |
| . O.              | 0.19    | -0.65   | 170          | 0.29        | e) 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.1      | 0.19             | 0.0    | 6.02   | 0.17                 | -12.6**      |
| 84 13 8.0         | -0.26*  | -3.12** | 6:1          | -0.44**     | 71,0**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | **       | 0.24             | 0.0    | 17.6   | 9.0                  | -13.2**      |
| Variona 10.8      | 0.13    | -4.20** | 145          | -0.03       | -31,2**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.       | -0.09            | 0.03   | 16.6   | 0.13                 | -13,9**      |
| H 160 15.2        | -0.05   | -1.52** | 158          | 0.17        | -25.55-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.7      | 0.13             | -G.UA  | 23.2   | -0.19                | 37.8**       |
| RS 3 14.5         | 0.25    | 0.09    | D91          | 0.28*       | -87. See                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.5      | 0.19             | 0.06   | 21.6   | S. C.                | .5.7:        |
| 1 6342 9.9        | -0.61** | 12.05** | 170          | -0.93**     | 6.8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.3      | -0.71** 0.03     | . U.03 | 23.0   | -0.45**              | . 40.8       |
| KR 5610 9.8       | -0.13   | -2.16** | 1.58         | 90.0        | -15,9**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.3      | -0.01            | 0.1    | 1.61   | -0.11                | -B. 7 •      |
| M 590 10.3        | 0.14    | 90.0    | 125          | <b>9</b> .0 | 24.8**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.6      | -0.0 <u>-</u>    | -0.13  | 19.3   | 0.05                 | <u>-</u> 1.1 |
| P 16-13 11.4      | 0.16    | 0.09    | 151          | 0.18        | ->6.9*-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.5      | 0.28             | -0.03  | 22.3   | 0.17                 | -1.2         |
| P Rat 219 13.2    | 0.17    | 1.36.   | 159          | 0. 38**     | 17.5**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.4      | 0.30             | -0.09  | 23.2   | 0.16                 | -6. 3**      |
| Overall mean 11.8 |         |         | 149          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.8      |                  |        | 21.0   |                      |              |

| Parents           | Mean   | Main shoot length | ength            | Pods  | Pods on main shoot | shoot    | Po     | Pod length |         | Seed  | Seeds per pod |         |
|-------------------|--------|-------------------|------------------|-------|--------------------|----------|--------|------------|---------|-------|---------------|---------|
|                   | Mean   | ۵                 | S'd <sub>I</sub> | Ten.  | ۵                  | , P*8    | #<br>E | ۵          | S*d     | Teor. | ۵             | ۲۰۰۶    |
| At 18             | 50.9   | -0.14             | -7.8**           | 41.4  | -0.24•             | **B7.4-  | 6.00   | 0.69.0     | -0.04   | 10.6  | 0.03          | -0.33** |
| BR ::             | 9.4    | 0.16              | 19.9**           | 1.1   | 0.11               | 6.H6**   | 1.74   | -0.50**    | -0.07   | 10.1  | 0.03          | 4.64.0  |
| Veruna            | 57.9   | 0.06              | -4.8*            | 35.8  | 0.17               | -0.02    | 4.00   | 0.03       | -0.11   | 10.5  | 0.19          | -0.13   |
| M 160             | 55.7   | -0.10             | -1.6             | 39.6  | 0.04               | -0.98    | 3.74   | 0.11       | -0.12   | 10.3  | -0, 11•       | -0.34   |
| RS 3              | 87.8   | -0.06             | 4.0.4            | 17.11 | ~0.0%              | -0.94    | 4. 10  | 0.28*      | 1.0     | 9.5   | 0.12          | -0.08   |
| 1 6342            | . 8.83 | -0.07             | -1.9**           | 37.4  | -0.50              | 3.65**   | 7.00   | -0.34**    | 0.10    | 10.3  | -0.22*        | -0.49.  |
| KR 5610           | 33.6   | -0.06             | 0.2              | 98.9  | 0.01               | -1.77**  | 1.65   | -0.52**    | -0.97** | 9.9   | 0.05          | -0.10   |
| N 590             | 46.6   | 0.0               | -4.6.4-          | 13.1  | 0.15               | 0.29     | 1.98   | -0.25      | -0.11   | 11.2  | 9, 13         | 0.78**  |
| P 16-13           | 24.4   | 0.14              | -8.2.            | 5.1.5 | 0.13               | .0. 59** | 5.53   | 0.49**     | 0.32**  | 10.1  | -0.21         | -0.29*  |
| P Rai 219         | 48.5   | -0.04             | 5.3**            | 35.5  | -0.01              | -4.10**  | 1,69   | -0.01      | 0.44**  | 11.0  | 0.19          | 0.51**  |
| Overall mean 51.9 | 51.9   |                   |                  | 56.8  |                    |          | 3.84   |            |         | 10.3  |               |         |

9 Mean a Performence averaged over 6 environments.