

Are *bzh* semi-dwarf hybrids deprived with regard to plot front-border effects in yield trials?

KARIN HOLZENKAMP¹, ANDREAS GERTZ², GERD PATRICK BIENERT³, HEIKO C. BECKER¹, ANTJE SCHIERHOLT¹

¹ GEORG AUGUST UNIVERSITÄT GÖTTINGEN

² KWS SAAT SE

³ LEIBNIZ-INSTITUT FÜR PFLANZENGENETIK UND KULTURPFLANZENFORSCHUNG (IPK)

Introduction

normal type (Bzh/Bzh)

semi-dwarf (bzh/Bzh)

semi-dwarf hybrids:

- shorter, higher harvest index
- better lodging stability
- winterhardiness
- higher nitrogen use efficiency
- drought tolerant

(Pinochet and Renard 2012)

• However, they have a small market share

Competition effect

- between plots/genotypes
- physiological and morphological differences
 - plant height
 - nutrient uptake
 - root system

Plot front-border effect

- occur at the plot front-border to adjacent free areas/paths
- do tall hybrids have a larger photosynthetically active canopy by being able to lean further into paths than semi-dwarfs?
- calculated as a percentage:

 $\frac{\text{complete plot} - \text{core plot}}{\text{complete plot}}$

Are *bzh* semi-dwarf hybrids deprived with regard to plot front-border effects in yield trials?

 Experimental approach: near-isogenic hybrid pairs, three environments, two plot treatments: core plot harvest and complete plot harvest

Material and Methods

3 environments

- 2017: <u>Reinshof</u> (University of Göttingen); humid summer
- 2018: <u>Reinshof</u> (University of Göttingen) and <u>Eilensen</u> (KWS SAAT SE); hot and dry summer

Removal of plot front-border

Experimental design

- three repetitions in each environment
- split-split plot design

Plot front-border effect in semi-dwarfs and normal type hybrids

Plot type	Core-plot			Complete plot			Plot front-border	
	seed yield (dt ha ⁻¹)			seed yield (dt ha ⁻¹)			effect (%)	
environment	semi-dwarf		normal type	semi-dwarf		normal type	semi-dwarf	normal type
Reinshof 2017	36.5	ns	38.1	41.5	ns	42.0	12.1	9.3
Reinshof 2018	42.5	ns	41.3	48.4	+	47.4	12.3	12.8
Eilensen 2018	34.2	ns	34.0	37.6	ns	35.9	8.9	5.4
Mean	37.8	ns	37.8	42.5	+	41.8	11.2	9.6

Semi-dwarf hybrids have a higher plot front-border effect than normal type hybrids

semi-dwarf hybrids are not deprived in yield trials

Straw yield and harvest index *

Plot type	Core-plot			Complete plot			
environment	semi-dwarf		normal type	semi-dwarf		normal type	
Mean straw yield (dt ha⁻¹)	41.3	**	52.7	45.4	**	61.7	
Mean harvest index	0.49	**	0.43	0.50	**	0.42	

Semi-dwarf hybrids have a significantly lower straw yield and therefore a higher harvest index

Do the two hybrid growth-types differ in root system size?

Root electrical capacitance (EC) measurement

- measurement at begin and end of flowering
- 8 near-isogenic hybrid pairs
- 3 environments
- 2 repetitions
- 12 plants per plot

Chloupek (1972)

Root electrical capacitance in semi-dwarf and normal type hybrids

Environment	semi-dwarf		normal type
Root EC begin of flowering (nF)	3.5	ns	3.3
Root EC end of flowering (nF)	2.6	ns	2.5

mean root EC measured at beginning and end of flowering did not differ significantly for growth types

10

How does the *bzh* and *Bzh* expression differ in roots and shoots?

- Expression analysis of bzh and Bzh
- two primer pairs
- three genotypes
- two seedling tissues: hypocotyl and root
- three biological and three technical repetitions

Bzh/bzh

bzh/bzh

Bzh/Bzh

Expression analysis of *bzh* and *Bzh*

- semi-dominant effect apparent
- higher expression of the bzh/Bzh alleles in hypocotyls than in roots

Semi-dwarf hybrids have a higher plot front-border effect than normal type hybrids

semi-dwarf hybrids are not deprived in yield trials

No significant difference in root system size under field conditions

root EC as a measurement for root system size

The *bzh* and *Bzh* alleles are not only expressed in shoots, but also in roots

→ the semi-dominant effect becomes apparent

Thank you for your attention!

Special thanks go to:

Tina Tietz and Henning Hartwig for providing data Birger Koopmann, Plant Pathology and Crop Protection Division Georg-August-University Göttingen

This work was supported by the Deutsche Forschungsgemeinschaft [Emmy Noether grant 1668/1-1 to G.P.B.].

KWS

SEEDING THE FUTURE

SINCE 1856

