





# **Canola Meal for Poultry:** *Recent Studies and Perspectives*

Bogdan A. Slominski and Anna Rogiewicz

Department of Animal Science, University of Manitoba, Winnipeg, Canada

15th International Rapeseed Congress, Berlin, June 2019





# Outline

- Canola/rapeseed processing effects on:
  - Chemical composition, and
  - Variability in the nutritive value of CM/RSM.
- High inclusion levels of CM/RSM in poultry nutrition:
  - Broiler chickens,
  - Turkeys,
  - Laying hens.
- Expeller/cold pressed canola/rapeseed.
  - Advantages and limitations
- An update on yellow-seeded canola research.
- Conclusions.

## Chemical composition of CM/RSM (% DM)

| Component                     | Conv   | SBM    |           |      |
|-------------------------------|--------|--------|-----------|------|
|                               | Canada | Europe | Australia | OBIN |
| Crude protein                 | 41.6   | 40.5   | 40.4      | 50.2 |
| Ether extract                 | 3.3    | 2.4    | 2.1       | 2.5  |
| Sugars <sup>1</sup>           | 6.6    | 7.3    | 7.2       | 7.5  |
| Oligosaccharides <sup>2</sup> | 3.0    | 2.9    | 3.2       | 6.2  |
| NDF                           | 29.6   | 29.6   | 32.5      | 14.4 |
| Total dietary fiber           | 38.4   | 39.6   | 42.9      | 24.0 |
| Total P                       | 1.12   | 1.21   | 1.10      | 0.73 |
| Non-phytate P                 | 0.41   | 0.34   | 0.36      | 0.31 |
| Glucosinolates <sup>3</sup>   | 3.6    | 6.3    | 1.8       | -    |
| AMEn, poultry                 | 1987   | 1971   | -         | 2453 |

<sup>1</sup> Includes glucose, fructose, and sucrose; <sup>2</sup> Includes raffinose and stachyose; <sup>3</sup> µmol/g

# **Important Considerations**

- Dietary inclusion levels of CM/RSM in poultry and swine diets are limited to 5-10% due to concerns related to high fiber content and the presence of glucosinolates.
- The maximum allowable inclusion rates are often restricted by variability in the nutritive contents of CM/RSM.
- Processing conditions appear to be the biggest source of variability.









# Effect of heat treatment on NDF and NDF residual protein (NDICP) content of canola meal



# Canola meal Survey 2011-2017

### Seven annual surveys. Over 260 samples of CM analysed

**Canola Crushing Plants Location** 





Analysed for CP, NDF, TDF, NSP, glycoproteins, lignin and polyphenols, fat, AA, sugars, total and non-phytate P, glucosinolates.

## Canola meal Survey 2011-2017 Dietary fibre vs. glucosinolates



## Canola meal Survey 2011-2017 Total dietary fiber vs. NDF



### Canola meal Survey 2011-2017 NDF vs. NDICP



## **Dietary fibre vs. SID lysine**









## **Canola meal Survey 2017**

Ether extract (EE) and acid hydrolyzed ether extract (AHEE) contents of CM



## Canola meal Survey 2017

### Ether extract (EE) and acid hydrolysed ether extract (AHEE) digestibilities in broiler chickens (%)

| EE<br>digestibility | Digestible EE<br>content<br>(% DM) | AHEE<br>digestibility | Digestible<br>AHEE content<br>(% DM) | Digestible<br>soapstocks<br>content (% DM) |
|---------------------|------------------------------------|-----------------------|--------------------------------------|--------------------------------------------|
| 81.1                | 2.1                                | 53.0                  | 3.1                                  | 0.9                                        |

Soapstocks and gums are poorly digested and contribute less energy to the AME<sub>n</sub> content of CM than EE.

## Apparent metabolizable energy (AME<sub>n</sub>) and enzyme supplementation in poultry



# High inclusion levels of canola meal in poultry diets



# Summary of feeding trials with poultry fed diets containing different levels of CM

| Species  | Length | CM level | BWG       | FCR         | Reference              |
|----------|--------|----------|-----------|-------------|------------------------|
|          | (d)    | (% diet) | (kg/bird) | (feed/gain) |                        |
| Broilers | 35     | 0        | 2.32      | 1.53        | Rad-Spice et al., 2018 |
|          |        | 15       | 2.30      | 1.51        |                        |
| Broilers | 10     | 0        | 0.29      | 1.24        | Mejicanos et al., 2017 |
|          |        | 15       | 0.29      | 1.19        |                        |
| Broilers | 28     | 0        | 1.32      | 1.45        | Ariyibi et al., 2018   |
|          |        | 6        | 1.37      | 1.45        |                        |
|          |        | 18       | 1.40      | 1.45        |                        |
|          |        | 30       | 1.36      | 1.49        |                        |
| Turkeys  | 56     | 0        | 3.90      | 1.71        | Kozlowski et al., 2018 |
|          |        | 20       | 3.89      | 1.73        |                        |
| Turkeys  | 56     | 0        | 3.67      | 2.16        | Zdunczyk et al., 2013  |
|          |        | 3        | 3.69      | 2.12        |                        |
|          |        | 12       | 3.69      | 2.08        |                        |
|          |        | 18       | 3.69      | 2.11        |                        |

## **Broiler chicken growth performance study**

- One day old Ross 308 male broiler chickens.
- Diets were balanced for digestible AA and available energy contents.
- Dietary treatments:

|      | Pre-starter      | Starter | Grower 1 | Grower 2 |  |  |  |
|------|------------------|---------|----------|----------|--|--|--|
| Diet | 0-7 d            | 8-14 d  | 15-21 d  | 22-28 d  |  |  |  |
|      | % of Canola Meal |         |          |          |  |  |  |
| 1    | 0                | 0       | 0        | 0        |  |  |  |
| 2    | 3                | 4       | 5        | 6        |  |  |  |
| 3    | 6                | 8       | 10       | 12       |  |  |  |
| 4    | 9                | 12      | 15       | 18       |  |  |  |
| 5    | 12               | 14      | 20       | 24       |  |  |  |
| 6    | 15               | 18      | 25       | 30       |  |  |  |



### **Broiler chicken growth performance study**

### **Experimental diets**

| Item               | Pre-starter | Starter | Grower 1 | Grower 2 |
|--------------------|-------------|---------|----------|----------|
| CP, %              | 23          | 22      | 21       | 20       |
| ME, kcal/kg        | 2950        | 3000    | 3100     | 3150     |
| Dig. Lysine, %     | 1.40        | 1.32    | 1.21     | 1.09     |
| Dig. Methionine, % | 0.59        | 0.48    | 0.45     | 0.41     |



# Effect of incremental levels of CM on growth performance of broiler chickens (1-28 d of age)

| Diet | Level of CM | Feed intake        | BWG                | ECP                |
|------|-------------|--------------------|--------------------|--------------------|
|      | %           | g/bird             | g/bird             | FUR                |
| 1    | 0           | 1921 <sup>b</sup>  | 1325 <sup>b</sup>  | 1.45 <sup>ab</sup> |
| 2    | 3-6         | 1986 <sup>ab</sup> | 1370 <sup>ab</sup> | 1.45 <sup>ab</sup> |
| 3    | 6-12        | 2051 <sup>a</sup>  | 1431 <sup>a</sup>  | 1.43 <sup>b</sup>  |
| 4    | 9-18        | 2023 <sup>ab</sup> | 1398 <sup>ab</sup> | 1.45 <sup>b</sup>  |
| 5    | 12-24       | 2006 <sup>ab</sup> | 1371 <sup>ab</sup> | 1.46 <sup>ab</sup> |
| 6    | 15-30       | 2031 <sup>ab</sup> | 1364 <sup>ab</sup> | 1.49 <sup>a</sup>  |

<sup>ab</sup> P<0.05



# Effect of incremental levels of canola meal in broiler diets on performance parameters (1-28 d of age)



**Body Weight Gain** 

1.8 1.45 <del>-1.45</del> 1.43 <del>1.46</del> 1.5 1.45 g feed/g gain 1.2 0.9 0.6 0.3 0 □ 3-6% □ 0% 6-12% **9-18% 12-24% 15-30** 

FCR

# Laying hen study

Lohmann LSL hens of 35 to 59 weeks of age

Diets balanced for digestible AA content.

Phase 1 35-47 wk of age 2800 kcal/kg ME, 17.0% CP <u>Phase 2</u> 48-59 wk of age 2700 kcal/kg ME, 16.4% CP

#### Treatments: 0, 4, 8, 12, 16 and 20% of canola meal

- Two experimental periods of 12 weeks each.
- 6 replicate cage units of 18 birds each.





# Glucosinolates content of experimental diets (µmol/g)

| Diet | Canola meal, % | Glucosinolates |
|------|----------------|----------------|
| 1    | 0              | 0.10           |
| 2    | 4              | 0.28           |
| 3    | 8              | 0.52           |
| 4    | 12             | 0.97           |
| 5    | 16             | 1.30           |
| 6    | 20             | 1.49           |

The level of glucosinolates of approximately 1.5 µmol/g of the diet has been proposed as a "no-adverse effect" when fed to laying hens (Khajali and Slominski, 2012)

# The effect of different levels of canola meal on laying hen performance



35-59 weeks of age

| Dietary     | Hen-day | Egg weight         | Egg                | Feed      | Feed               |
|-------------|---------|--------------------|--------------------|-----------|--------------------|
| level of CM | %       | g                  | g/hen/day          | g/hen/day | g feed/g egg       |
| 0%          | 97.2    | 64.2 <sup>a</sup>  | 62.3 <sup>a</sup>  | 120       | 1.92 <sup>a</sup>  |
| 4%          | 96.2    | 63.3 <sup>ab</sup> | 60.9 <sup>b</sup>  | 120       | 1.97 <sup>b</sup>  |
| 8%          | 96.9    | 63.4 <sup>ab</sup> | 61.4 <sup>ab</sup> | 120       | 1.95 <sup>ab</sup> |
| 12%         | 97.6    | 63.5 <sup>ab</sup> | 61.9 <sup>ab</sup> | 120       | 1.93 <sup>ab</sup> |
| 16%         | 96.1    | 63.3 <sup>b</sup>  | 60.8 <sup>b</sup>  | 119       | 1.95 <sup>ab</sup> |
| 20%         | 97.2    | 63.1 <sup>b</sup>  | 61.3 <sup>ab</sup> | 119       | 1.94 <sup>ab</sup> |

<sup>ab</sup> Means within a column with no common letters differ significantly (P<0.05)

# The effect of different level of canola meal on egg quality



# Sinapine and a "fishy" taint in brownshelled eggs

The "fishy" flavor is due to the presence of trimethylamine (TMA), which results from a genetic defect among laying hens of Rhode Island Red.



 No longer a problem due to breeding chickens (Lohmann) free of defective gene involved in the conversion of sinapine to odorous TMA.



## **Expeller/cold pressed canola**



#### Expeller Press (screw press) diagram



Screw press KEK P0500 (Egon Keller)

## Chemical Composition of CM/RSM (% DM)

| Component                     | Conventional | Expeller-pressed |
|-------------------------------|--------------|------------------|
| Component                     | CM/RSM       | canola           |
| Crude protein                 | 41.6         | 37.9             |
| Ether extract                 | 3.3          | 12.2             |
| Sugars <sup>1</sup>           | 6.6          | 5.6              |
| Oligosaccharides <sup>2</sup> | 3.0          | 2.9              |
| NDF                           | 29.6         | 27.2             |
| Total dietary fiber           | 38.4         | 34.4             |
| Total P                       | 1.12         | 1.04             |
| Non-phytate P                 | 0.41         | 0.38             |
| Glucosinolates, µmol/g        | 3.6          | 9.2              |
| AMEn, poultry                 | 1987         | 2506             |

<sup>1</sup> Includes glucose, fructose, and sucrose; <sup>2</sup> Includes raffinose and stachyose

# **Limitations of Expelling**

- Incomplete rupture of the cells.
- High glucosinolate content.
- Active myrosinase.
- Potential effects of heat due to friction.
- The biggest source of variability (i.e., oil content may range from 8.5 to 20%).





### The effect of different levels of rapeseed cake on laying hens performance Lohmann Brown laying hens of 22-46 weeks of age

Rapeseed cake contained 15.8% crude fat and 21 µmol/g of glucosinolates

| Expeller<br>cake level | Hen-day<br>production<br>% | <b>Egg</b><br>weight<br>g | <b>Egg</b><br>mass<br>g/hen/day | Feed<br>consumption<br>g/hen/day | Feed<br>efficiency<br>g feed/g egg | C 18:3 n-3<br>% |
|------------------------|----------------------------|---------------------------|---------------------------------|----------------------------------|------------------------------------|-----------------|
| 5%                     | 96.4                       | 58.8                      | 56.8                            | 107                              | 1.90                               | 1.10            |
| 10%                    | 96.5                       | 57.8                      | 55.8                            | 106                              | 1.90                               | 1.61            |
| 15%                    | 95.7                       | 58.3                      | 55.8                            | 104                              | 1.88                               | 2.03            |

Halle and Schone. 2013, J. Verbr. Lebensm. DOI 10.1007/s00003-013-0822-3



## Nutrient encapsulating effect of cell walls Expelled canola





Limited utilization of oil due to encapsulating effect of cell wall/ non-starch polysaccharides (NSP)

# Effect of particle size and enzyme supplementation on energy utilization

## Canola Seed

Sample provided by Triple S Farms, Manitoba, Canada

- As is (coarse)
- Reground (fine)
- As is (coarse) + Enzyme





# Effect of particle size and enzyme supplementation on energy utilization



## **Development of yellow-seeded canola**





- Breeding for low-fiber canola have resulted in the quantitative changes as evidenced by increased oil, protein, and sucrose contents rather than any significant improvements in nutrient utilization due to the decreased fiber content.
- Rad-Spice, M., A. Rogiewicz, J. Jankowski, B.A. Slominski. 2018. Yellow-seeded Canola. Part 1. Nutritive value of the meal for broiler chickens. Anim. Feed Sci. Technol. 240:66-77.
- Kozlowski, K., D. Mikulski, A. Rogiewicz, Z. Zdunczyk, M. Rad-Spice, H. Jeroch, J. Jankowski, B.A. Slominski. 2018. Yellow-seeded Canola. Part 2. Nutritive value of the meal for turkeys. Anim. Feed Sci. Technol. 240: 102-116.

# Conclusions

- 1. Canola seed processing conditions contribute to the variation in meal quality.
- 2. Excessive heating in the desolventizer/toaster would result in reduced digestibility of some amino acids, particularly lysine.
- 3. The NDF and ADF measurements could be indicators of CM meal quality.
- 4. CM/RSM could be used effectively at 15-20% in poultry diets, providing the diets are formulated based on digestible AA and available energy contents.





# Conclusions

- 5. Due to the low GLS content, high inclusion levels of canola meal would not adversely affect the animal health and growth.
- 6. Expeller/cold pressed canola utilization could be improved by dietary enzyme supplementation.
- 7. Most of canola fiber would have a minimal effect on nutrient utilization.





# **Acknowledgements**





Agriculture and Agri-Food Canada





# Thank you!