

Effector-triggered defence of brassicas against extracellular fungal pathogens

Henrik Stotz, Chinthani Karandeni Dewage, Katherine Noel, Jamie Stone, Bruce D. L. Fitt School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK

Oilseed rape diseases

Extracellular

Effector-triggered defence (ETD) against extracellular fungal pathogens

Recognition (receptor and effector present)

No recognition (receptor lacking)

Apoplastic pathogen effectors

- Effector recognition by receptor proteins (RLPs) that interact with SOBIR1
- Delayed resistance response may include host cell death
- ETD slows pathogen colonisation and does not eliminate the pathogen

P. brassicae – subcuticular niche

E. Boys (2009) unpublished

Huang et al. (2003) Plant Pathol

Stotz et al. (2014) Trends Plant Sci youtube.com/watch?v=Y9RoGrsZGCY

Resistance against extracellular fungal pathogens

- a) Major resistance gene against *P. brassicae*
- b) Temperature sensitivity of *R* genemediated resistance
- c) Interactions between pathogen effectors and their corresponding host receptors

Over-representation of NLR genes in resistance against clubroot pathogen

Number of LRR genes in mapped regions:

Sclerotinia: 118

Leptosphaeria: 221

Plasmodiophora: 57

Total in genome: 720

Proportion of LRR genes belonging to specific family within resistance loci

Fine mapping of a major resistance locus against *P. brassicae* and identification of candidate resistance genes

Poster 207
Chinthani Karandeni Dewage

Resistant phenotype

Susceptible phenotype

Boys et al. (2012) Plant Pathol.

Fine mapping of a major resistance locus against *P. brassicae* and identification of candidate resistance genes

Fine mapping of the resistance locus using KASP markers

Fine mapping of a major resistance locus against *P. brassicae* and identification of candidate resistance genes

(c) Identification of candidate genes for resistance against *P. brassicae*

Temperature sensitivity of resistance against *Leptosphaeria maculans*

- 1. Temperature sensitivity of *R* gene-mediated resistance
- 2. Role of SNC1
- 3. Temperature sensitivity of QDR (with NPZ)

Katherine Noel

Effect of temperature on R gene-mediated resistance

Cotyledon assay in CE cabinet – challenge Topas NILs (Larkan et al., 2016) with avirulent *L. maculans* isolates at 20°C and 25°C.

- ➤ Assess lesion development
- ➤ Lines that display more severe symptoms at 25°C than at 20°C judged are temperature-sensitive.

Differences in temperature sensitivity of *R* genemediated resistance in *NILs* challenged with *L. maculans* isolates expressing *AvrLm4-7*

-> Gene expression

Differences in temperature sensitivity of different *R* genes

Duplicated genes in the brassicas Keiichi Okazaki Corresponding to AtSNC1

Poster 360

Hypotheses:

• FocBr1 confers resistance to Fusarium oxysporum.

Predicted interactions between ATR1 and RPP1

- ➤ Interaction model with RPP1-WsB
- Analysis of positively selected amino acids (PAML)
- Functional analysis in Nicotiana benthamiana

Acknowledgements

University of Hertfordshire

Chinthani Karandeni Dewage Katie Noel Jamie Stone Dr Yongju Huang Prof Bruce Fitt

Rothamsted Research

Prof Jon West

LS Plant Breeding & NPZ

Craig Padley
Dr Steffen Rietz

Niigata University

Prof Keiichi Okazaki

UC Berkeley

Dr Tiancong Qi

Prof Brian Staskawicz

