## Hormonal Responses to

# Plasmodiophora brassicae Infection in Brassica napus Cultivars Differing in Their Pathogen Resistance 

Sylva Prerostova ${ }^{1}$, Petre I. Dobrev ${ }^{1}$, Veronika Konradyova ${ }^{2}$, Vojtech Knirsch ${ }^{1}$ T, Alena Gaudinova ${ }^{1}$, Barbara Kramna ${ }^{1,3}$, Jan Kázda², Jutta Ludwig-Müler ${ }^{3}$ and Radomira Vankova ${ }^{1}$
konradyova@af.czu.cz
1 Institute of Experimental Botany Czech Acad Sci, Laboratory of Hormonal Regulations in Plants
2 Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Plant Protection,
3 Charles University, Faculty of Science, Department of Experimental Plant Biology
4 Technische Universität Dresden, Faculty of Biology, Institute of Botany

## Clubroot

- Obligate biotroph Plasmodiophora brassicae - cause clubroot disease in 3700 members of Brassicaceae, including oilseed rape (canola)
- Chemical treatments (e.g. sodium $N$ methyldithiocarbamate) have had limited effects
- Cultivation of (at least partially) resistant cultivars - the only effective solution
- The understanding of mechanisms of efficient plant defence - an important prerequisite for the breeding of new resistant cultivars



## Clubroot and Phytohormones

- Infection development requires modulation of host metabolism, including hormone pools
- Gall formation - associated with the stimulation of cell division cytokinin and auxin activity
- Cytokinin (CK):
enhance the sink strength
elevation in galls important for the attraction of nutrients to infected roots
P. brassicae convert adenine to trans-zeatin and its riboside $\rightarrow$ pathogen is able to form CKs at least in the limited amount
- Auxin (IAA, indole-3-acetic acid):
elevation of content as well as stimulation of auxin-inducible genes in A. thaliana $\rightarrow$ morphological changes in the roots including cell elongation


## Clubroot and Phytohormones

- The pathogen imposes alteration of the levels of other hormones
- Abscisic acid (ABA):

hormone associated with abiotic stress responses
found elevated in the host plant at the later stages of $P$. brassicae infection
at least partially due to the restriction of water transport by roots and the resulting water deficit in above-ground parts


## - Salicylic acid (SA):

the key hormone in the defence against biotroph infection
Its level was found to be strongly enhanced by P. brassicae infection in resistant ecotype of $A$. thaliana

- Jasmonic acid (JA)

Elevation of biosynthesis and JA-responsive gene expression may raise a question whether this effect is a part of the host plant defence or a part of the pathogen strategy to overcome plant defence by suppression of the SA pathway

## Aims and Goals

- Hypothesis: the pathogen responses - differ among different species or even cultivars
- Compared two cultivars of Brassica napus :

SY Alister - the more resistant cultivar
Hornet - the sensitive cultivar

- Characterize responses associated with enhanced resistance to P. brassicae
- Determine the responses at the:
levels of hormones (CK, auxin, SA, JA and ABA)
expression of hormone-related genes
- The effect of $P$. brassicae infection - followed in roots and galls and also in leaves - taking into account the communication between roots and shoots



## Aims and Goals

- The pathogen responses - differ among different species or even cultivars
- Compared two cultivars of Brassica napus :

SY Alister - the more resistant cultivar
Hornet - the sensitive cultivar


- Characterize responses associated with enhanced resistance to P. brassicae
- The responses determined at the:
levels of hormones (CK, auxin, SA, JA and ABA)
expression of hormone-related genes
- The effect of $P$. brassicae infection was followed in roots and galls and also in leaves - taking into account the communication between roots and shoots



## Material and Methods

- Biological materials and pathogen inoculation
$\checkmark$ susceptible cultivar Hornet
$\checkmark$ the clubroot resistant cultivar SY Alister

$\checkmark$ Plasmodiophora brassicae pathotype 6 (according to Williams, 1966)
- Disease assessment (Strelkov et al., 2006)

$$
\mathrm{DI}(\%)=\frac{\sum(n \times 0+n \times 1+n \times 2+n \times 3)}{N \times 3} \times 100
$$


$0-3$ scale: 0 - no galling, 1 - a few small galls, 2 - moderate galling on the main and lateral roots, and 3 - severe galling, the root was totally deformed.

## Material and Methods

- Experimental design:
a) Control


SA + Plasmodiophora
2 SA + Plasmodiophora
JA + Plasmodiophora
b) Plants inoculated by P. brassicae
c) Inoculated plants treated once by foliar spray with 1 mM SA at the day of inoculation
d) Inoculated plants treated by foliar spray with 1 mM SA at the day of inoculation and 15 dai (the beginning of gall formation)
e) inoculated plants treated with 1 mM JA 15 dai.

## Material and Methods

- Phytohormone analyses - analysed using HPLC (High Performance Liquid Chromatography)
- Quantitative RT-PCR - RNA isolation, reverse transcription, qPCR
- Statistic analysis - two-sample Student's t-test with the software PAST 3.01.


# Results: Plasmodiophora brassicae infection responses differ between cultivars and hormone treatments 



## Results: Growth promoting hormones

## Cytokinins

Auxins


## Results: Defense hormones

## Salicylic acid

Jasmonic acid





## Results: Stress hormone

## Abscisic acid





## Results: <br> Hormone-related gene expression

|  |  | Hornet |  |  |  |  | Alister |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | dai | 15 | 22 | 35 | 42 | 49 | 15 | 22 | 35 |  | 49 |
|  | Plasmodiophora |  |  |  |  |  |  |  |  |  |  |
|  | SA + Plasmodiophora |  |  |  |  |  |  |  |  |  |  |
|  | 2 SA + Plasmodiophora |  |  |  |  |  |  |  |  |  |  |
|  | JA + Plasmodiophora |  |  |  |  |  |  |  |  |  |  |



## Results: Hormone-related gene expression

leaves


Hornet Alister

PR1

roots
Hornet Alister

galls
Hornet Alister


Alister vs Hornet
leaves
roots


## Summary: the Plasmodiophora brassicae impact on Brassica napus plants during infection progression



| DAI | Early response (2-7 d) | Gall formation (10-22 d) | Late response (35-49 d) |
| :---: | :---: | :---: | :---: |
| Leaves |  |  |  |
| Roots |  |  |  |
| Galls |  |  |  |

## Conclusion

- Comparison of hormonal pools revealed rather minor differences between Alister and Hornet
- BUT resistant cultivar is able to increase levels of salicylic acid during the infection in roots and leaves
- Differences might reflect variance among cultivars - it seems that it is not possible to distinguish the resistant ones by screening of non-infected plants
- P. brassicae infection associated with early elevation of CKs and auxin in leaves and roots of both cultivars
- In Alister, the CK content in roots was down-regulated quite early
- Galls of both cultivars had at the beginning of their formation high levels of CKs and IAA (together with SA and JA)
- SA increased during later stages of infection, but to a somewhat earlier time point in Alister
- The SA marker gene PR1 exhibited the highest expression around the beginning of gall formation in leaves, roots and especially in galls
- JA level was higher in Hornet than in Alister during the whole experiment
- Difference between the activation of defence hormone pathways in resistant and sensitive cultivar is in accordance with the impact of SA and JA applications - SA further suppressed gall formation in Alister, while JA mildly promoted gall formation in both cultivars


## Acknowledgements:



Sylva Prerostova


Petr Dobrev


Alena Gaudinova


Vojtech Knirsch



Radomíra Vaňková


- Jutta Ludwig-Müller - Technische Universität Dresden, Faculty of Biology, Institute of Botany - for helping with manuscript


