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1. Research Background

(1) Importance of seed weight

A character tightly related to the evolution and fitness of
plants and a target agronomical trait for crop domestication and
improvement (Li and Li, 2015; 2016) .

seed coat
endosperm
embryo

® Belong to the seed traits, whose genetic model include the effects of
embryo, endosperm, cytoplasm and maternal genotype (Zhu, 1995).

(2) Complex of seed weight
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(3) Known genes and network for seed weight regulation
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® The present research into seed weight was focused on seed (such as embryo
and endosperm) itself, whereas the impact of mother plant is unclear.



2. Discovery of the maternal control of seed
welight In rapeseed (Brassica napus L.)

( 1) Representative lines of extreme seed weight

» We analysed of the phenotypic and genotypic diversity of 1083 inbred lines
of rapeseed from all over the world.

Thousand-seed weight
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® We obtained four large-seed (Thousand-seed weight > 6 g) and five small-
seed (TSW < 3 g) lines with large genetic distance and similar flowering time.



( 2 ) Genetic experiment design
Large-seed lines (L)

Small-seed lines (Ls)

L; XL; LL1<LS LS?:LL Lo XLg
F, Plants F, Plants
\ v
F, seeds F, seeds

® The different branches on one pair of plants were alternatively self- and
cross-pollinated, and the weight of obtained seeds were investigated;

@ The reciprocal F, seeds were planted and the weight of F, seeds were
investigated ad compared.



( 3 ) Maternal VS xenia effects on seed weight

» For all lines, the weights of seeds obtained from self and cross-pollination
showed no significant difference, that means xenia effect is not significant.

Parental lines (L-S) F.(LxL) F1(LxS) Maternal Xenia F1(SxS) F1(SxL) Materna Xenia
No. 02454- No. 01201 6.55+0.40A 6.61+0.66A  1.00 0.00 |4.19+0.24B 4.92+0.32B 0.70 0.30
No. 02454- No. 03482\6.14i0.13A 6.15£t0.59A  0.93 0.07 \4.99i0.428 4.95+0.588 1.00 0.00
No. 02454- No. 19179\6.7910.44A 6.46£0.49A  0.86 0.14 \4.29i0.688 4.42+0.84B 0.96 0.04
No. 02454- No. 91032\6.51i0.37A 6.37+0.83A  0.99 0.01 \4.93i0.7ZB 5.06£0.19B 0.83 0.17
No. 02454-No. 02210\6.22i0.45A 6.12+0.70A  0.95 0.05 \4.33i0.29B 4.57+0.49B 0.85 0.15
No. 09131- No. 01201\7.29i0.15A 7.07+0.50A 0.92 0.08 \4.56i0.14B 5.11+0.24B  0.80 0.20
No. 09131- No. 02210\7.01i0.20A 7.32+0.52A  1.00 0.00 \5.044_r0.44B 5.05+0.69B 0.99 0.01
No. 09131- No. 03482\7.53i0.58A 7.84+0.18A  1.00 0.00 \4.894_r0.29B 5.40+0.56B  0.82 0.18
No. 09131- No. 19179\7.42i0.15A 7.62+0.09A  1.00 0.00 \5.40i0.988 5.12+0.50B 1.00 0.00
No. 09131- No. 91032\6.96i0.25A 6.87+0.25A 0.94 0.06 \4.58i0.528 4.90+0.91B 0.90 0.10
No. 19004- No. 01201\7.36i0.52A 7.70+0.35A  1.00 0.00 \4.504_r0.3lB 5.12+0.42B  0.80 0.20
No. 19004- No. 02210\6.76i0.28A 6.88+0.16A  1.00 0.00 \3.65i0.37B 3.83+t037B 0.94 0.06
No. 19004- No. 03482\6.85i0.38A 6.98+0.48A  1.00 0.00 \3.60i0.16B 3.88+0.10B 0.91 0.09
No. 19004- No. 19179\ 7.66+£0.17A 7.73x0.22A  1.00 0.00 \4.15i0.088 4.25+0.15B  0.97 0.03
No. 19004- No. 91032\7.03i0.27A 7.19+0.22A  1.00 0.00 \4.15i0.33B 4.35+0.17B  0.92 0.08
Qing662- No. 01201 \5.664_r0.35a 5.47+0.60a 0.82 0.18 \4.44i0.11b 4.4310.58b  1.00 0.00
Qing662- No. 02210 \5.844_r0.61a 5.67+0.66a 0.93 0.07 \4.25i0.44b 4.51+0.18b  0.82 0.18
Qing662- No. 03482 \8.534_r0.08A 8.32+0.17A  0.95 0.05 \4.84i0.44B 5.02+0.49B 0.95 0.05
Qing662- No. 19179 \7.304_r0.53A 7.30£0.44A  0.97 0.03 \4.99i0.44B 5.08+0.43B 0.97  0.03
Qing662- No. 91032 |8.09+0.30A 7.33+0.42A  0.82 0.18 |4.36+1.44B 4.94+0.44B  0.81 0.19

m=} (F;-P,)(P,-P,)/ 3.(P,-P,)? (Cong, 1996)

® The mean of maternal effects for all crosses is 0.93, which showed that seed
weight difference of these lines was dominantly controlled by maternal effect.




( 4 ) Maternal genotypic vs Cytoplasmic effects

» The weights of F, seeds from most reciprocal F, were similar, that means
cytoplasmic effects is generlaly not significant.

Parental lines (L-S) F2(LxS)? Fo(SxL)

No. 02454- No. 02210° 3.97+0.49a 3.78+0.32a
No. 02454- No. 91032 4.31+0.40a 4.38+028a
No. 02454- No. 03482 4.72+0.62a 4.72+0.32a
No. 09131- No. 02210 3.66+0.22a 3.61+0.16a
No. 09131- No. 91032 3.92+0.20a 3.99+0.58a
No. 09131- No. 03482 4.39+0.35a 4.57+0.36a
No. 02454- No. 19179 4.74+0.51a 4.52+1.19a
No. 02454- No. 01201 4.31+0.39a 4.24+0.19a
No. 09131- No. 19179 4.50+0.50a 4.63+0.28a
No. 09131- No. 01201 4.05+0.19a 4.00+0.19a
No. 19004- No. 19179 4.54+0.37a 4.47+0.36a
No. 19004- No. 01201 4.17+0.40a 4.12+0.28a
No. 19004- No. 02210 3.95+0.31a 3.75+0.40a
No. 19004- No. 91032 4.23+0.22a 4.08+0.27b
No. 19004- No. 03482 4.31+0.37a 4.32+0.22a
Qing662- No. 19179 4.15+0.27a 4.38+0.37b
Qing662- No. 01201 4.08+0.18a 4.13+0.34a
Qing662- No. 02210 3.93+0.44a 3.85+0.51a
Qing662- No. 91032 3.87+0.23a 3.85+0.30a
Qing662- No. 03482 4.07+0.16a 4.14+0.19a

The results of two genetic experiments further showed that seed weight
difference of these lines is mainly determined by maternal genotype.



( 5) Maternal vs Embryonic vs Cytoplasmic effects

» Estimation of the variance components using the diploid seed embryo-
cytoplasmic-maternal effects (2nGoCGm) model (Zhu, 1996 ) .

Table 4. Estimation of genetic variance components for seed weight in rapeseed.

Parameter Variance Parameter Variance

Va 0.070** Vae 0.014

Vb 0.015 Ve 0.024%**

Vo 0.001*#* Ve 0.000

Vam 0.483** Vame 0.000

Viom 0.179** Vome 0.026**
Ve 0.188**

Va4, embryo additive variance; Vp, embryo dominance variance; V¢, cytoplasmic variance; V4, matemal additive variance; Vp,,, maternal dominance
variance; Vag, embryo additive interaction variance; Vpg, embryo dominance interaction variance; Vg, cytoplasmic interaction variance; Ve, maternal
additive interaction variance; Vpme, matemal dominance interaction variance; V., residual variance

** Significantly different at the 0.01 level.

The maternal, embryonic and cytoplasmic genotype explained the variances
of 68.8%, 12.3%410.2% respectively .

® This result also showed that seed weight difference of these
lines is mainly controlled by maternal genotype.

Li et al. (2015). The natural variation of seed weight is mainly controlled by
maternal genotype in rapeseed (Brassica napus L.). PLoS ONE 10(4): e125360




3. Causal link between the size of silique and seed

( 1) RILs with extreme seed weight
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® Interestingly, silique length of large-seed lines was all longer than small-
seed lines, indicating association between silique length and seed weight.

» To dissection the causes of seed weight difference between these lines, one
pair of lines with extreme difference was chosen for comparative study.



( 2) Genetic cause of seed weight difference
between RIL 4., and RIL ;g

R-ILOQTri X RIL09?4 R-ILO9?4 X RIL1143 R-IL114B X RILOQTM RIL1143 X R1L114B

6.64+041 (g) 6.61+0.11 (g) 3.67+043 (g) 3.63+0.03 (g)

For both RIL 4., and RIL,,,5, the weight of seeds from cross-pollination was near to

that from self-pollination, the maternal effect was 0.97 and 0.88, respectively.
® This result improved that seed weight difference between RIL 4, and

RIL,,,5Was controlled by maternal genotype.



( 3) Morphological cause of seed weight difference
between RIL g, and RIL ;g
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Seed volume and bulk density were compared between RIL4,, and RIL ;44
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® RIL., VS RIL,y,4:1.74 and 1.04 times for seed volume and bulk density,
respectively. Therefore, seed weight difference between RIL4,, and RIL ;44
was caused by seed size rather than bulk density.



(4 ) Cytological cause of seed size difference between
RIL g, and RIL

» Cell number and size were compared between RIL g, VS RIL ;44
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® RILyg,, VS RIL;y44: 1.36/1.36 and 1.07/1.06 times for seed coat/embryo surface
cell number and area, respectively. This result showed that seed size difference
between two RILs was mainly due to cell number followed by size.




( 5) Physiological cause of seed weight difference
between RIL g, and RIL ;4q

» To distinguish the relative role of siligue and other photosynthetic organs on
seed weight, the girding experiment was conducted on phloem.

SW(g)

B control

# griding

After girding of phloem, the falling range of seed weight for both large-
and small-seed RILs declined from =~20% to ~10% and ~2%, as the silique
develop.

® Photosynthate from pod wall is the major contributor to seed weight in
rapeseed



To dissect the influence way of
siliqgue wall photosynthesis on seed
weight, silique wall photosynthetic
rate and area were investigated.
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The photosynthetic rates of

RILy,, and RIL,,,s Were basically
the same, but the silique wall area
of the former is larger than latter.

® Although siligue wall photosynthetic rates of the large- and small-seed RILS
have no significant difference, but the difference in siligue length could lead
to the difference in siligue wall area and carbon assimilation.

» To find the cause of silique wall

area difference between two RILs,
the silique length and width were
compared.
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The width of RIL,,, and
RIL,,,s have no significant

difference, but the length of former
Is larger than that of the latter.



» To further dissect Major carbohydrate content in pod Major carbohydrate content per pod
the impact of carbon | " 0w
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® The above physiological and biochemical results indicated : silique
length—photosynthetic area and carbon assimilation — photosynthate
accumulation in siligue wall—photosynthate transport and storage in the
seeds—seed filling, size and weight.




( 6 ) Molecular mechanism of seed weight difference
between RIL 4., and RIL ;g

» To find the molecular evidence of silique length affecting seed weight, QTL
mapping and comparison were conducted using the BnaZNRIL population
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Footnote: WH and ZZ represent Wuhan and Zhengzhou respectively; red and green
indicate the positive alleles from Zhongshuangll and No.73290, respectively.

® AG6: one pair of co-localized QTL, opposite direction on two traits; A9: two pair
of co-localized QTL, same direction on two traits.




Several putative models underlying the co-localization of
QTLs for silique length and seed weight
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Reciprocal conditional QTL analysis was used to dissect the genetic cause of
three co-localized QTL pairs.
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Footnote: solid and dotted lines represent the LOD score of before and after conditional QTL

® A6: LOD scores increase after SL | SW and SW | SL, indicating negative pleiotropy;
A9: LOD scores become non-significant when SW | SL; while LOD scores decrease
when SL | SW, indicating physiological interaction where SL as upstream of SW.




» To obtain more information on how silique wall regulating seed weight,
siligue wall and seed of the large- and small-seed RILs pool were subjected
to transcriptomic analysis (at 25-DAF)
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» KEGG of DEGs in silique wall: i
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» KEGG of DEGs in the seeds: R
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New pathway for maternal control of seed weight in rapeseed

® The above systematic comparative analyses (including genetic, physiological,
cytological and molecular), revealed that silique photosynthetic area could
regulate seed size in a maternal fashion. The mechanism model as follow:

Causal genes underlying two major pleiotropic QTL

A 4

Expression of downstream response genes

A 4
Pod growth and development

A 4

Pod length and photosynthetic area

A 4

Photosynthate (sucrose and starch etc.) accumulation in pod wall

Mobile signal betwegn pod wall and seed

Photosynthate transport from pod wall to seed

Expression of genes related to reserves synthesis and metabolism etc.

Seed filling and development

Cell proliferation arld expansion in seed
A 4

Seed size and weight

Pod

Seed

® These RIL lines harbour

two major QTL for
siligue length, they can
regulate the expression
of downstream genes
related to silique
development, then affect
silique length  and
photosynthetic area ,

photosynthate and its
transport and storage in
seeds, finally affect seed
filling, size and weight

Li et al. (2018) Maternal control of seed weight in rapeseed: the causal link between the
size of pod (mother, source) and seed (offspring, sink). https://doi.org/10.1111/pbi.13011




4. Summary and conclusion

1. We discovered the maternal control of seed weight In
rapeseed.

® This original discovery overturns the potential cognition in the past,
breaks through the limitation that the original research focuses on seeds
themselves, and points out the direction for the research on seed weight
of rape.

2. We discovered a new mechanism for the maternal
control of seed weight through silique photosynthetic area

® This original achievement opened up a new field of seed weight
research and provided a new theory and approach for the improvement
of rape yield and traits.
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