

Tapetal Expression of BnaC.MAGL8.aCauses Male Sterile in Arabidopsis

Jie Gao¹, Qun Li¹, Nan Wang¹, Baolong Tao¹, Jing Wen¹, Bin Yi¹, Chaozhi Ma¹, Jinxing Tu¹, Tingdong Fu¹, Qiang Li¹, Jitao Zou^{2*}, Jinxiong Shen^{1*}

¹National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China ²National Research Council Canada, Saskatoon, Saskatchewan, SK, Canada *:Prof. Jinxiong Shen (jxshen@mail.hzau.edu.cn); Dr. Jitao Zou (jitao.zou@nrc-cnrc.gc.ca)

Abstract

Monoacylglycerol lipase (MAGL) hydrolyzes monoacylglycerol to release free fatty acid from the glycerol backbone. Although this enzyme has been shown to play important roles in mammals, its potential biological function in plants remains poorly understood. In a survey of MAGLs in *Brassica napus*, we have found that overexpression *BnaC.MAGL8.a*, a homolog of *AtMAGL8*, in tapetum leads to male sterility in *Arabidopsis*. Tapetal cells of the transgenic lines became vacuolates at stage 10 in transgenic plants and then degraded with microspores in stage 11. Defected exine wall was observed on the pollen of transgenic plant. Transcriptome analysis identified 398 genes differentially expressed between transgenic plants and wild type (WT). *ABORTED MICROSPORES (AMS)* and its regulated pollen wall biosynthesis genes were down-regulated, while genes in reactive oxygen species (ROS) homeostasis and jasmonates siganling pathway were up-regulated. These results suggested that expression of *BnaC.MAGL8.a* in tapetum invoked stress response and impaired pollen development.

Results

WТ

unknown biological

Fig. 1 BnA9::BnaC.MAGL8.a plants were male sterile. WT (A) and BnA9::BnaC.MAGL8.aplants (B) with siliques. WT (C) and BnA9::BnaC.MAGL8.a (B) flowers, bar =1 mm. Alexander stained anthers from WT (E) and BnA9::BnaC.MAGL8.a plants (F), bar = 100 µm.

Fig. 2 Alignment of deduced amino acid sequences of *BnaC.MAGL8.a*, *BnaA.MAGL8.a*,

Fig.3InvitroenzymeassaysofMBP:BnaC.MAGL8.a recombinant protein.

Fig. 4 Semi-thin transverse sections of anthers from WT and *BnA9::BnaC.MAGL8.a* plants. dPG, degenerated pollen grains; E, epidermis; En, endothecium; Msp, microspore; PG, pollen grains; T, tapetum; Tds, tetrads. Bar = 25 μ m.

Fig. 5 Transmission electron micrographs of the
tapetum from WT and BnA9::BnaC.MAGL8.aTable
formationplants. CW, cell wall; dPG, degenerated pollen grain;
dT, degenerated tapetum; El, elaioplast; ER,
endoplasmic reticulum; Ex, exine; In, intine; Mt,
mitochondria; N, nucleus; Ta, tapetosome; V,TAIR_
0
AT3G26vacuoles. Bars = 2 μ m.5

Fig. 6 Transmission electron micrographs of microspores and pollen grains from WT and *BnA9::BnaC.MAGL8.a* plants. dPG, degenerated pollen grain; dT, degenerated tapetum; Ex, exine; In, intine; PC, pollen coat; PG, pollen grain; VN, vegetative nucleus. Bars = $2 \mu m$.

Fig. 7 Functional categorization of differentially expressed genes on GO biological processes.

Table 1 Genes related with pollen wallformation were down-regulated in transgenicplants

TAIR_ID	NAME ^a	Description	log2FC
AT2G1691	AMS	bHLH transcription factor	-0.76
AT3G2612 5	CYP86C2	a protein with cytochrome P450 domain	-1.58
AT1G6950 0	CYP704B1 ^a	participate sporopollenin synthesis	-1.53
AT1G2843 0	CYP705A24	member of CYP705A	-1.53
AT1G7592 0	EXL5 ^a	pollen coat protein	-1.43
AT5G5319 0	SWEET3	nodulin MtN3 family protein	-1.35
AT1G3343 0	KNS4/UPEX1	involved in pollen exine formation	-1.28
AT4G14815		seed storage 2S album superfamily	-1.25
AT1G2201 5	DD46	galactosyltransferase family protein	-1.04
AT4G29250		HXXD-type acyl-transferase family	-0.99
AT5G0753 0	GRP17	the most abundant pollen coat protein	-0.99
AT5G16960		Zinc-binding dehydrogenase family	-0.92
AT1G26710		transmembrane protein	-0.90
AT1G7116 0	KCS7 ^a	participate sporopollenin synthesis	-0.90
AT4G2005 0	QRT3 ^a	degradingthe pollen mother cell wall	-0.86
AT1G7454 0	CYP98A8 ^a	participate pollen wall synthesis	-0.74
AT1G7594 0	ATA27	similar to the BGL4 beta-glucosidase	-0.69
AT1G6111 0	NAC25	NAC transcription factor	-0.68
AT5G4907 0	KCS21ª	related with GA signal participate sporopollenin synthesis	-0.57
AT5G48210		prolamin-like protein (DUF1278)	-0.56
AT1G6799 0	TSM1	essential for phenylpropanoids synthesis	-0.56

Conclusion

In this work, we studied *BnaC.MAGL8.a*, which encodes a MAG lipase, from oil seed rape cultivar 'Zhongshuang 11'. Based on *AtMAGL8* being preferentially expressed in developing pollen and germinating seeds, we used *BnA9* promoter and *CaMV35S* (35S) promoter to drive *BnaC.MAGL8.a* expression in *Arabidopsis* to explore its potential biological function. Though 35S::BnaC.MAGL8.a transgenic plants showed similar phenotype as wild type, overexpression of *BnaC.MAGL8.a* in tapetum resulted in impaired pollen development and male sterility (Fig. 1). Alexander staining of anthers from transgenic plants revealed degenerated pollen grains adhered with round pollen grains in the locules. Although microspores released from tetrads as WT, the tapetum became vacuolated and degenerated with microspores. The elaioplasts and tapetosomes were observed in tapetum from both WT and *BnA9::BnaC.MAGL.a* plants. Pollen wall formation was also perturbed in the transgenic lines. In addition to *BnaC.MAGL.a* plants, composing 157 up-regulated genes and 240 down-regulated genes.