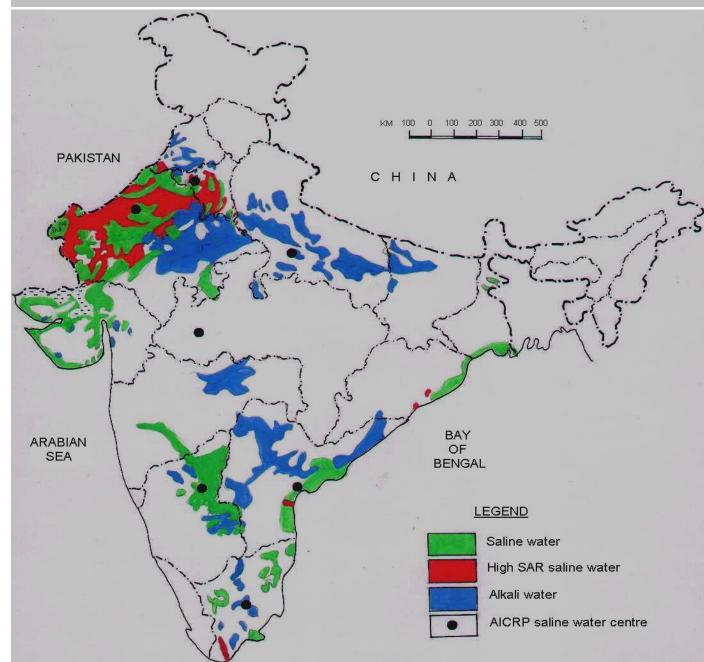
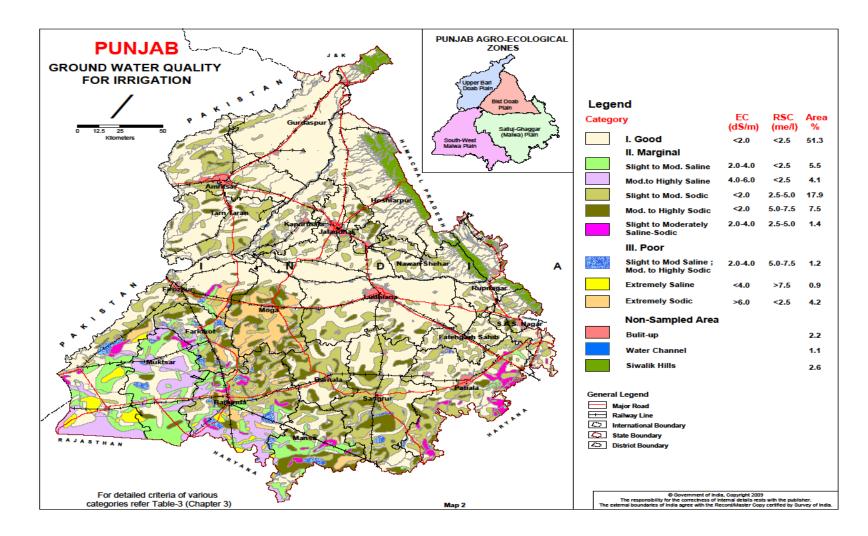
Physiological and biochemical basis of salinity tolerance in Indian mustard (*B. juncea*)



Pushp Sharma Senior Physiologist Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab INDIA pushp20@pau.edu

Introduction


- India with share of 17.2% in area and 8.5% in production of rapeseed-mustard ranks third in the world. Rapeseedmustard is the second most important oilseed crop after soybean in India.
- Good quality water resources are becoming increasingly scarce for use in agriculture and are allocated with priority to domestic and industrial users. Consequently, marginal quality waters are being used for irrigation with little or no consideration of their long-term impact on soils especially in the arid and semi-arid regions
- WORLD : About 10 m ha of irrigated land suffers from secondary salinization and sodification

Groundwater Quality for Irrigation in India

40-60% of the groundwater in northwestern parts of India have higher (30-50 %) residual alkalinity.

Many more areas with good quality aquifers are endangered with contamination а of consequence excessive withdrawals of ground water and subsequent flows from poor quality aquifers.

Out of 42 % poor quality ground waters, 25 % are saline, 69 % are sodic and 6 % are saline-sodic in nature.

- Irrigation water induced salinity and sodicity are becoming serious threat to mustard cultivation.
- Phenotyping genotypes for morpho-physiological and biochemical traits conferring salinity tolerance will aid to develop salt/drought tolerant mustard cultivars.

Objectives

- To study the effect of different salt stress regimes on morphophysiological and biochemical traits of *Brassica juncea* genotypes.
- To identify the traits responsible for salinity tolerance.
- To characterize genotypes for physiological responses under different salinity regimes.
- To explore the selection possibility of stress indices on the physiological responses.

Material and Methods

Permanent plots irrigated with different levels of saline and sodic water are maintained at the research farm of the Department of Soil Science, Punjab Agricultural University, Ludhiana

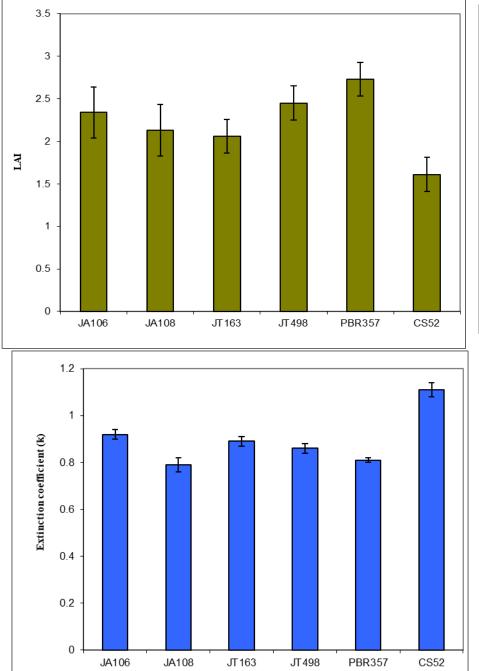
Soil type : sandy loam soil (Typic Ustochrept)

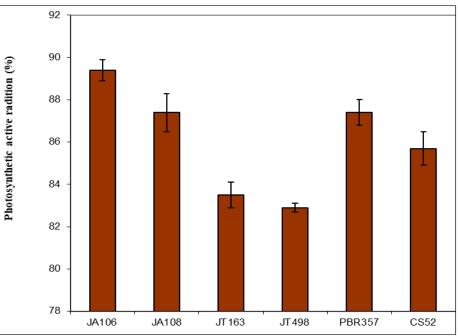
Irr	igation induced salinization	Levels	2015-16	2016-17
A	Irrigation with sodic water (sodium bicarbonate) Sodicity/alkalinity	RSC (4) : 0, 3, 6.5 and 10 me/l	36 advanced introgressed lines (ILs) along with wild donor species (<i>B. fruticulosa</i> , <i>Erucastrum abysinnicum</i> , <i>Diplotaxis tennisiliqua</i> , UP <i>B.nigra</i>)	Four ILs (JA106, JA108, JT 163 & JT498) along with the released variety (PBR357) and national salinity check, CS 52
В	Irrigation with saline water (sodium chloride) Salinity	EC (5) : 0, 3, 6, 9 and 12ds/m	36 advanced introgressed lines (ILs) along with wild donor species (<i>B. fruticulosa</i> , <i>Erucastrum abysinnicum</i> , <i>Diplotaxis tennisiliqua</i> , UP <i>B.nigra</i>)	Four ILs (JA106, JA108, JT 163 & JT498) along with the released variety (PBR357) and national salinity check, CS 52

CS 52 : Developed by ICAR-Central Soil Salinity Research Institute ,Karnal INDIA

Observations		Instrument/Method			
SPAD values		SPAD 502 Plus, Minolta			
Leaf area and Photosynthetic active radiations		Digital Canopy Imager CL-110			
Extinctions coefficient (k)		-In (PAR b/PAR a) /LAI			
Chlorophyll content		Hiscox and Israelstam 1979			
Soluble Na and K		Sodium and potassium measured in the 1:2 soil extract using Flame-photometer (Richards 1954)			
Soluble Ca+ Mg		Versenate method (Richards 1954)			
Soluble HCO- ₃ and CI-	:	Richards 1954			
Total soluble sugars		Dubois <i>et al.</i> (1956)			
Proline		Bates (1973)			
Ascorbate		Roe and Kuether (1943)			
ἀ tocopherol		Asthir (2009)			
Growth, yield and yield attribut	tes	s at maturity			
 Oil content NMR (Newport Ana N content and glucosinolates N 	-				
Tolerance parameters (Fisher and Maurer (1978) Salinity susceptibity index (SSI): (1-(Ys/Yp))/(1-Ys / Yp), where Ys and Yp yield under stress and non-stress for each cultivar Ys and Yp yield mean in stress and conditions for all cultivars					
Salinity tolerance index (STI): Ypi x Ysi/Ypi ² Ypi: seed yield under non stressed/irrigated conditions Ysi: seed yield under stress conditions					

Results

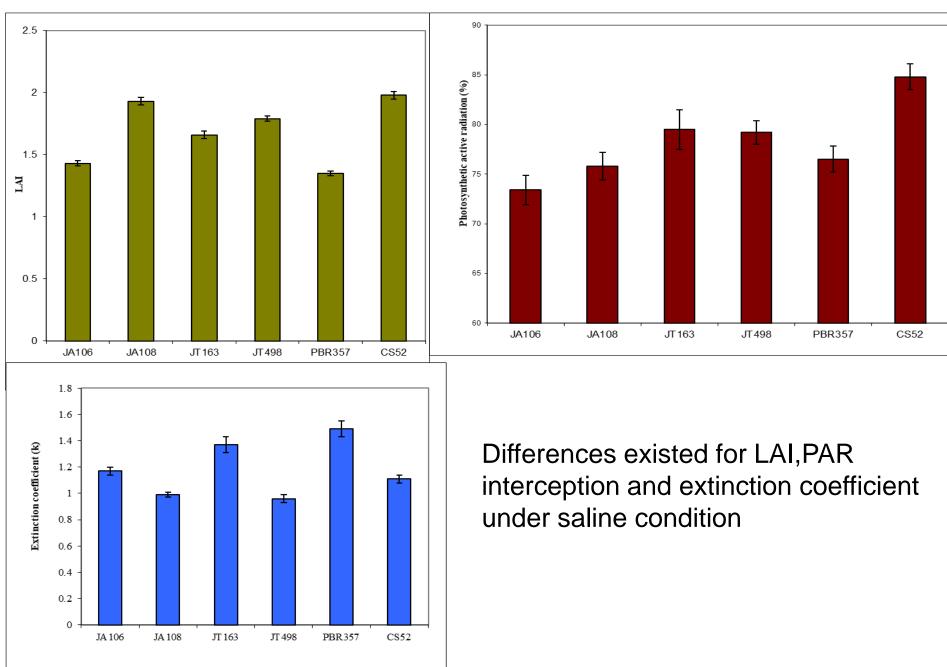

Reproductive phase was longer by 4-5 days in ILs and PBR357 with alkalinity and only in JA108 and PBR357 by 5 days with salinity


With the increase in alkaline and salinity levels ,leaf area index (LAI), photosynthetic active radiations (PAR) and extinction coefficient (k) decreased.

Results

PAR and k showed inverse relationship

Alkaline /sodic condition

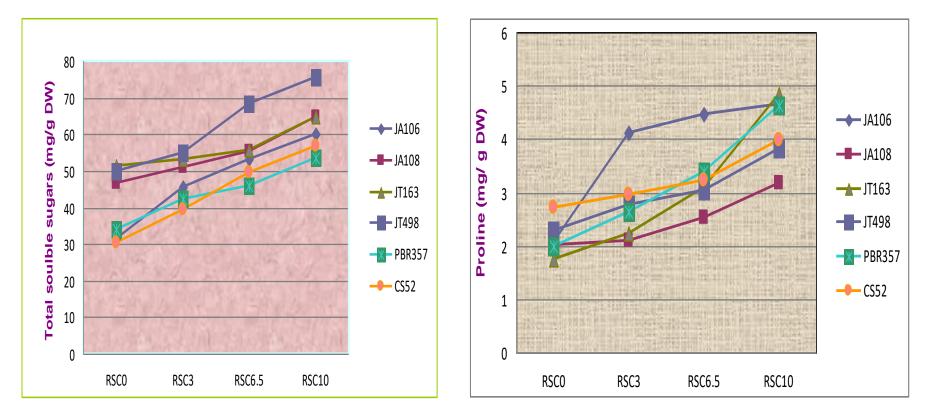


Variation existed for LAI,

PAR interception and extinction coefficient at flowering stage under sodic /alkaline condition

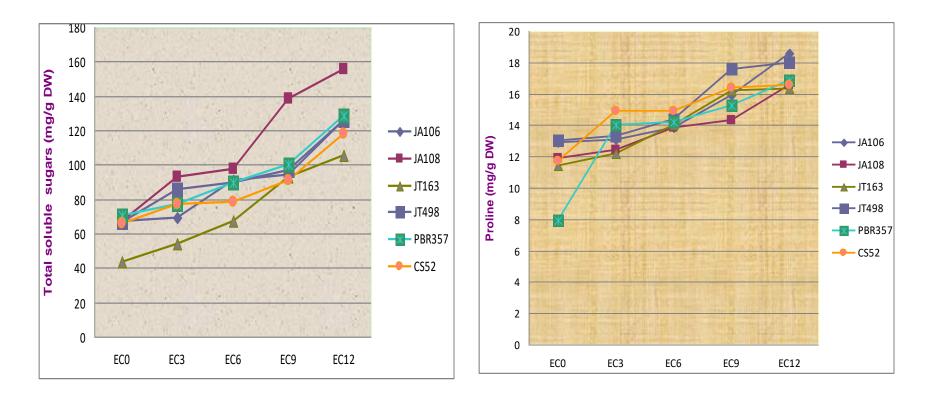
Saline condition

Effect of alkalinity levels on photosynthetic pigments (mg/g FW)


Pigments		Alkaline lev	vels				
	RSC0	RSC3	RSC6.5	RSC10			
	Chl a						
Range	1.57-1.66	1.45-1.60	1.29-1.57	1.16-1.38			
Mean	1.65	1.52	1.44	1.3			
	·	Chl b		•			
Range	0.35-0.50	0.27-0.40	0.24-0.34	0.21-0.29			
Mean	0.42	0.34	0.30	0.25			
	Total Chlorophyll						
Range	1.89-1.96	1.79-1.88	1.63-1.86	1.54-1.84			
Mean	1.93	1.85	1.73	1.65			
	Carotenoids						
Range	0.46-0.59	0.44-0.49	0.42-0.46	0.36-0.42			
Mean	0.52	0.47	0.44	0.40			
	SPAD						
Range	43.9-47.8	42.8-44.8	41.8-43.8	39.9-42.8			
Mean	45.4	44.1	42.8	41.7			

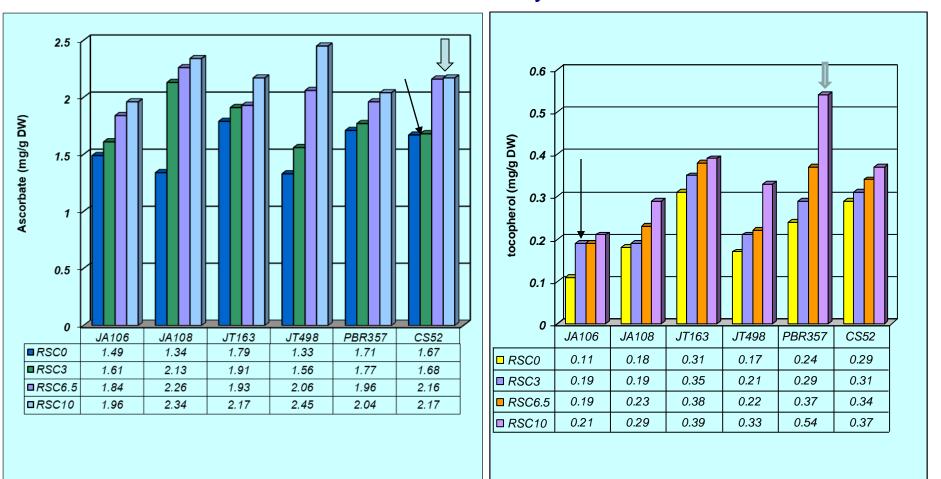
Effect of salinity levels on photosynthetic pigments

	Saline levels							
Pigments	EC0	EC3	EC6		EC12			
. ginente		•	Chl a					
Range	1.52-1.84	1.47-1.72	1.39-1.64	1.34-1.6	1.15-1.57			
Mean	1.67	1.59	1.48	1.42	1.33			
	Chl b							
Range	0.35-0.48	0.31-0.36	0.29-0.33	0.18-0.32	0.18-0.29			
Mean	0.43	0.34	0.32	0.27	0.25			
	Total Chlorophyll							
Range	1.86-2.27	1.75-2.08	1.75-1.96	1.64-1.87	1.34-1.87			
Mean	2.04	1.91	1.84	1.73	1.65			
	Carotenoids							
Range	0.48-0.61	0.47-0.54	0.43-0.51	0.41-0.46	0.35-0.45			
Mean	0.55	0.51	0.46	0.44	0.42			
	SPAD							
Range	43.55-46.1	41.05-44.2	40.85-42.8	40.2-41.4	37.25-40.95			
Mean	44.6	43.16	41.82	40.83	39.59			

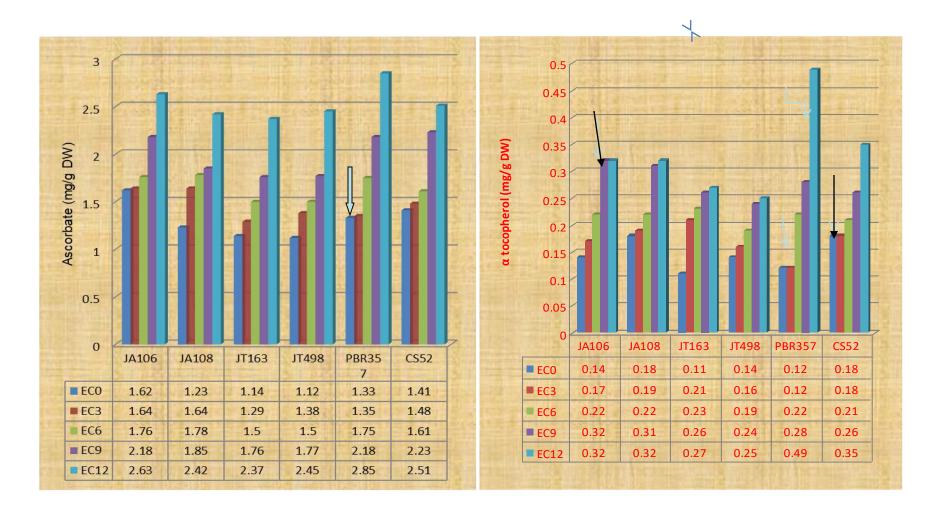

Compatible solutes or osmolytes

Effect of alkalinity

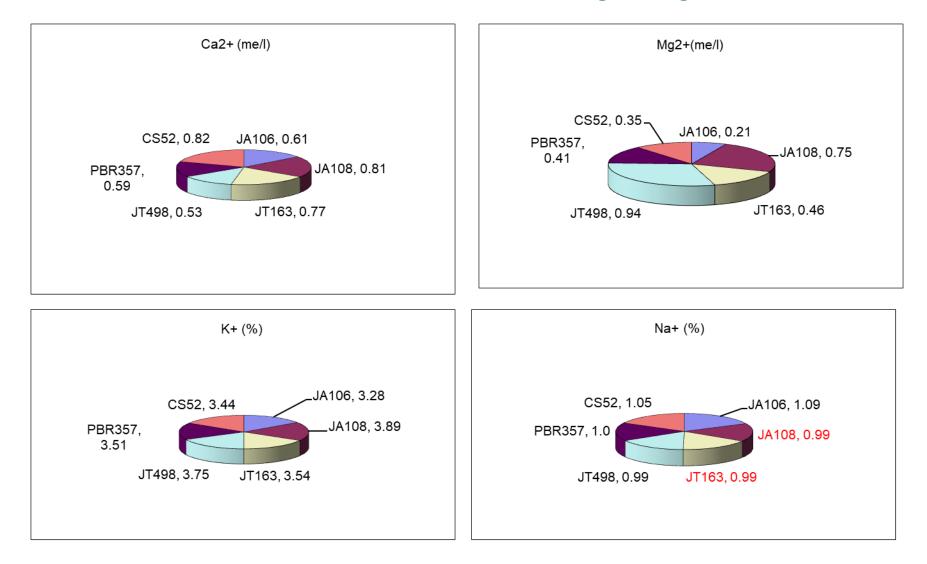
Total soluble sugars and proline content increased with increase in alkalinity levels


Effect of salinity

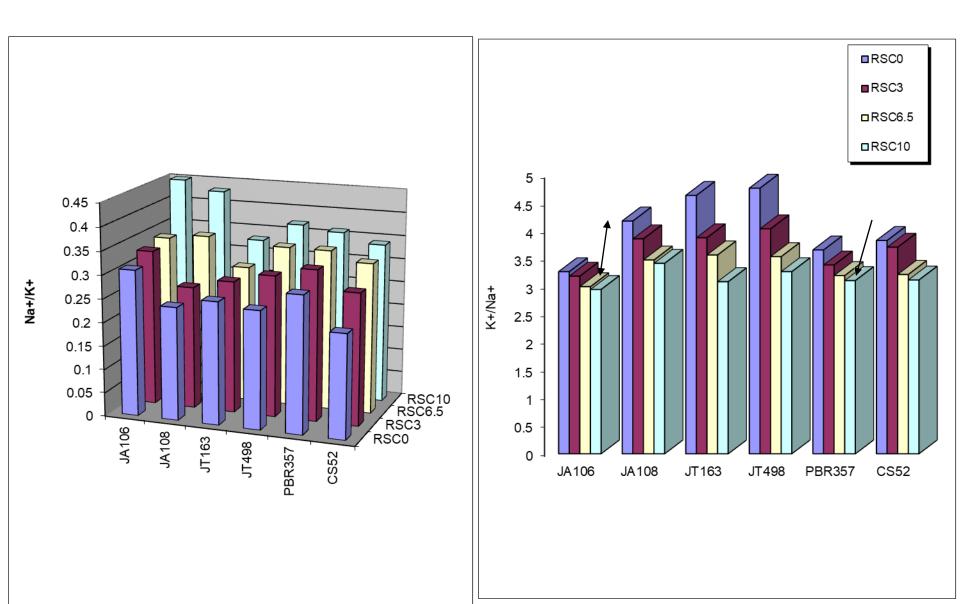
Genetic variations for osmoprotectants

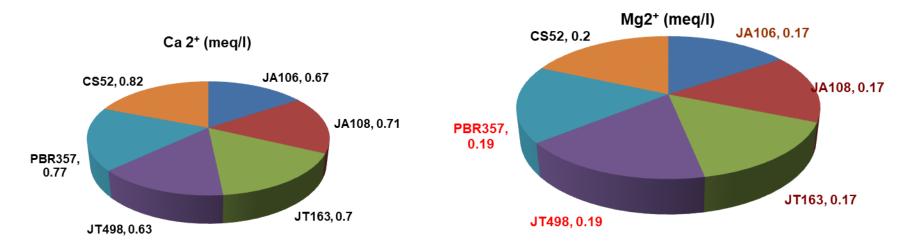

Total soluble sugars and proline content increased with increase in salinity levels

Antioxidative molecules

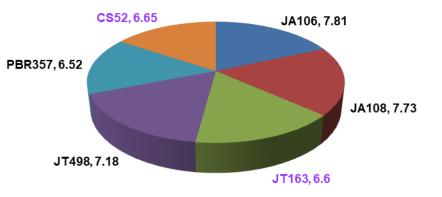

Effect of alkalinity

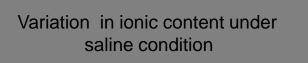
Effect of salinity

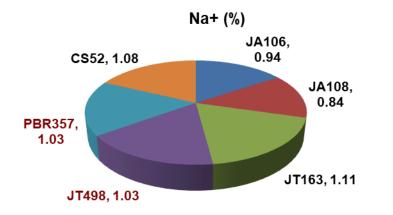


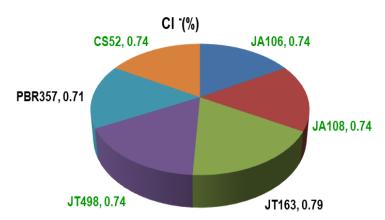

Up regulation of ascorbic acid and $\dot{\alpha}$ tocopherols with increased saline and alkaline levels

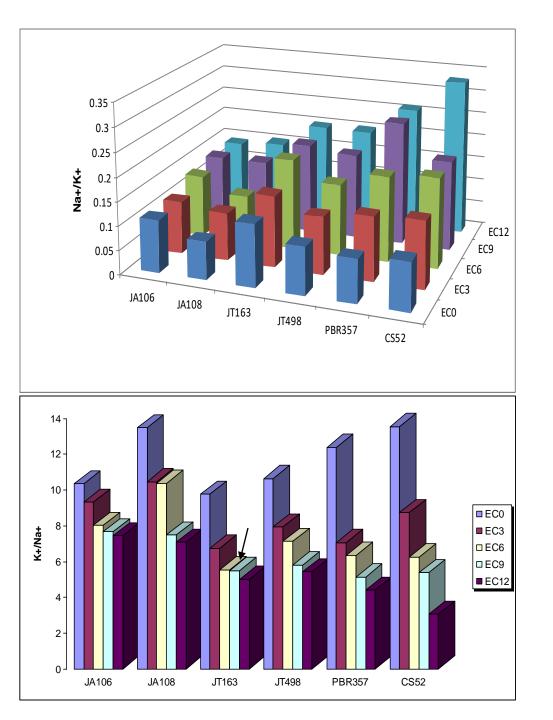
Variation in ionic content under alkaline condition in the leaves at flowering stage

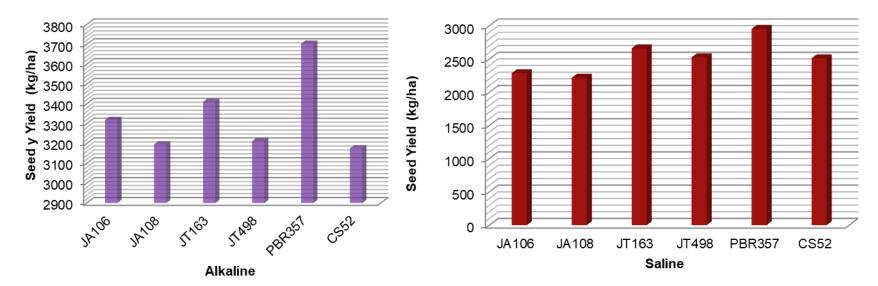



Effect of alkalinity levels on Na⁺/K⁺ and K⁺/Na⁺ ratio









- ✓ Increased salinity levels increased Na⁺/K⁺ but
 decreased K⁺/Na⁺
- ✓ Differential responses
 to salinity and magnitude of variation exists

							i	
	RSC0		RSC3		RSC6.5		RSC10	
Alkaline levels/				1				r
Traits	Range	Mean	Range	Mean	Range	Mean	Range	Mean
Growth parameters								
Plant height (cm)	192.1-203	195.4	187.4-195.1	187.9	177.8-187.3	184.3	154.0-167.4	168
Main shoot length (cm	67.2-86.1	74.1	60.3-78.5	68.6	57.9-78.3	66.4	54.4-76.7	63.4
Primary branches	5.6-7.8	6.3	5.1-7.2	5.8	5.0-6.6	5.6	4.6-6.1	5.3
Secondary branches	12.8-16.7	15.1	11.9-16.3	14.1	10.7-15.5	12.9	9.2-14.0	11.2
Yield components								
Siliquae on main shoot	39.9-47.9	44.4	39.5-46.1	42.9	37.5-44.1	41.3	34.0-42.2	39.6
Total Siliquae /plant	272.6-379.6	341.4	269.9-372	319.4	253.1-336.9	291.1	204.7-325.2	253.3
Seed weight (g)	3.6-5.7	4.6	3.4-5.6	4.2	3.2-5.1	4.0	3.0-4.9	3.7
Siliqua length (cm)	4.4-4.8	4.6	4.1-4.8	4.5	4.1-4.7	4.4	3.7-4.3	4.1
Seeds/siliqua	14.2-15.4	14.8	12.7-14.6	13.7	12.4-14.5	13.2	12.0-14.4	12.8
Yield								
Biological yield (q/ha)	16.3-21.1	17.6	14.4-20.3	15.9	11.3-17.5	13.5	8.8-11.9	9.8
Seed yield (kg/ha)	3880-4283	4080	3194-3969	3514	2869-3550	3092	2372-3013	2638
oil content (%)	40.2-42.2	41	39.6-41.8	40.6	39.6-41.6	40.4	39.0-40.9	39.9
Crude protein (%) in	20.2.20.4	20.6	28.4.20.2	20.0	28.4.28.0	20 E	27.2.20.7	20.4
seeds	29.2-30.4	29.6	28.1-29.3	28.8	28.1-28.9	28.5	27.3-28.7	28.1
Nitrogen (%) in seeds	4.7-4.9	4.7	4.5-4.7	4.6	4.5-4.6	4.6	4.4-4.6	4.5
Glucosinolates				-10				-110
(µmole /g defatted meal)								
u	77.7-83.9	81.1	75.8-83.1	79.3	71.4-82.4	76.8	67.2-81.3	73.4

Salinity levels /	EC0		EC3		EC6		EC9		EC12	
Traits	Range	Mean								
Growth parameters										
Plant height (cm)	168.4-183.7	172.9	163.5-176.9	168.6	141.2-161.9	154	135.4-152.8	143.9	122.6-136.4	127.6
Main shoot length (cm)	59.9-75.5	67.4	55.7-67.6	61.6	50.8-60.9	56.7	46.1-56.1	49.4	48.1-49.7	45.8
Primary branches	6.4-6.8	6.2	4.5-6.5	5.5	4.4-6.2	5.2	3.7-5.4	4.7	3.7-4.6	4.4
Secondary branches	8.9-12.6	11.1	7.8-10.6	9.1	6.2-10.1	8.2	5.6-8.6	7.0	3.9-8.1	5.6
Yield components										
Siliquae on main shoot	39.2-43.0	40.9	34.7-40.2	38.5	33.2-38.3	36.2	32.7-36.9	35.3	29.5-34.5	32.6
Total Siliquae /plant	144-247.9	181.4	140.5-197.4	155.5	102-179.0	136.3	94.5-172.9	123.9	90.1-127	98.5
Seed weight (g)	4.0-6.7	5.5	3.2-5.8	4.7	2.9-5.3	4.3	2.9-4.8	3.8	2.7-4.8	3.6
Siliqua length (cm)	4.7-5.5	5	4.4-5.2	4.8	4.2-5.1	4.6	4.1-4.7	4.4	3.8-4.5	4.2
Seeds/siliqua	11.3-13.3	12.4	11.4-13.1	12.1	10.6-12.3	11.8	10.1-11.6	10.7	9.1-11.0	9.8
Yield										
Biological yield (q/ha)	9.4-14.7	12	9.1-13.6	11.2	7.5-12.2	9.1	5.2-8.3	7.2	4.7-8.0	6.4
Seed yield (Kg/ha)	2061-2966	2619	2219-2955	2460	1538-2736	2257	1497-2408	1950	1011-2038	1651
oil content (%)	40.6-42.7	41.4	40.2-40.9	40.9	38.5-41.3	39.9	38.4-40.5	39.1	37.6-38.9	38.3
Crude protein(%) in seeds	31.2-32.0	31.6	30.2-30.6	38.4	28.2-30.4	29.2	27.7-28.9	28.1	26.4-28.2	27.5
Nitrogen (%) in seeds	5-5.1	5.1	4.8-4.9	4.8	4.5-4.9	4.7	4.4-4.6	4.5	4.2-4.5	4.4
Glucosinolates (µmole /g defatted meal)	73.3-86.9	82.6	70.6-85.6	80.9	70.5-85.0	78.2	65.2-80.7	74.7	63.8-80.5	73.2

Stress Indices	Sodic/ alkaline levels				
	JA163	PBR357	CS52		
Salinity tolerance index (STI)	0.82	0.82	0.68		
Salinity susceptibility index (SSI)	0.6	0.7	1.2		
		Saline levels			
Salinity tolerance index (STI)	JA163	PBR357	CS52		
	0.74	0.84	0.84		
Salinity susceptibility index (SSI)	0.64	0.62	0.69		

Over the years

- Decrease in Ca²⁺ and Mg²⁺ ions resulted in decline in chlorophyll.
- JT 163 and PBR 357 possessed higher total soluble sugars, proline, ascorbate and tocopherols as compared to check, CS 52.
- JT 163 registered more number of branches and length of main raceme while PBR 357 had higher seed weight, biomass and seed nitrogen.
- ➢ PBR 357 and JT 163 holds promise under saline conditions based on higher seed yield and tolerance index (STI≥0.62).
- Seed yield was positively correlated with tolerance index (0.892, 0.955**) but negatively associated with susceptibility index (-0.896, -0.955**).

Conclusions

Salt stress reduced productivity but there existed genotypic variation for salinity tolerance.

Accumulation of osmolytes and antioxidative molecules imparts tolerance.

Lower Na⁺ and Na⁺/K⁺ ratio but higher K⁺ and K⁺/Na⁺ associated with tolerance.

Higher tolerance index (STI) and lower susceptibility index (SSI) indicate salinity tolerance.

Co-authors		
Kannu Priya	Masters' student	Punjab Agricultural University, Ludhiana, India
Virender Sardana	Senior Agronomist	Punjab Agricultural University, Ludhiana, India
Om Parkash Chaudhary	Senior Soil Chemist cum Head	Punjab Agricultural University, Ludhiana, India
Surinder Singh Banga	ICAR National Professor	Punjab Agricultural University, Ludhiana, India

ACKNOWLEDGEMENTS

Head Department of Soil Science, Punjab Agricultural University, Ludhiana

ICAR National Professor Chair for providing a set of advanced Introgressed lines.

Punjab Agricultural University for providing research Infrastructure.