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Background 

Knowledge of flower development and maturity particularly in drought periods is critical for canola 
(Brassica napus L.) growers. Qualitative and quantitative trait loci (QTL) controlling flowering time 
have been identified in several overseas populations of Brassica species (Osborn et al. 1997; Zhao et 
al. 2010). Identification of such loci in Australian canola populations is vital for developing new canola 
germplasm having an optimal time of flowering to maximise yield. Flowering time is regulated by 
several genes and environmental cues. In Arabidopsis, five partially independent pathways capable of 
inducing flowering: photoperiod, autonomous/vernalisation, gibberellic acid, integrator and floral 
meristem identity, and repressors have been revealed (Bernier and Perilleux 2005; Dennis and 
Peacock 2007; Michaels 2009). Signals originating from these regulatory pathways are integrated at 
different levels by the set of integrator genes (Ausin et al. 2005). Other factors such as plant density, 
nutrient supply, drought stress and pathogen pressure can also influence flowering time. In order to 
dissect such complexity, understanding of genetic control of flowering is important. 

 

In this study, we characterised 188 accessions of Brassica, collected from different parts of the world, 
and identified (i) genetic variation in flowering time, (ii) genomic regions associated with flowering time, 
and (iii) aligned these genomic regions associated with various components of flowering time with next 
generation sequence data of cultivars Skipton and Ag-Spectrum. 
 

Materials and Methods 

One hundred and eighty one accessions of Brassica napus L, one of B. rapa, three of B. juncea and 
two of B. carinata, collected from different parts of the world, were characterised for various 
components of flowering time [days to first flower, days to last flower, duration of flowering, response 
to vernalisation (no vernalisation vs. 8 wk vernalisation at 4-6°C) and photoperiod (16 hr vs. 8 hr 
photoperiod]. All genotypes were evaluated under controlled environment growth cabinets, glasshouse 
and field conditions. In order to identify loci controlling flowering time, a DH population derived from 
Skipton and Ag-Spectrum was also phenotyped under glasshouse and field conditions, and genotyped 
using molecular markers.  

 

DNA was isolated from approx. 10 week-old glasshouse-grown seedlings using a standard phenol-
chloroform method and further analysed for polymorphisms using markers based upon Diversity Array 
Technology (DArT P/L, Canberra, Australia), simple sequence repeat (SSR), sequence-related 
amplified polymorphism, sequence characterised amplified region and candidate genes. The genetic 
linkage map was produced using Map Manager version QTL20b (Manly et al. 2001) using the 
Kosambi mapping function, as described previously (Raman et al. 2009). Accuracy of the marker 
order within linkage groups was checked using the R/qtl statistical analysis package (Broman et al. 
2003), RECORD computer package (van Os et al. 2005), and compared with previously published 
maps (Choi et al. 2007; Lowe et al. 2004; Piquemal et al. 2005; Suwabe et al. 2008; Suwabe et al. 
2006). An integrated map consisting of 671 markers was subsequently employed for identifying QTL 
associated with flowering time using the whole genome average interval mapping approach (Verbyla 

http://www.ndsu.edu/pubweb/~mcclean/plsc731/homework/papers/li%20and%20quiros%20-%20sequence-related%20amplified%20polymorphism%20(SRAP),%20a%20new%20marker%20system%20based%20on%20a%20simple%20PCR%20reaction%20-%20its%20application%20to%20mapping%20and%20gene%20tagging%20in%20Brassica.pdf
http://www.ndsu.edu/pubweb/~mcclean/plsc731/homework/papers/li%20and%20quiros%20-%20sequence-related%20amplified%20polymorphism%20(SRAP),%20a%20new%20marker%20system%20based%20on%20a%20simple%20PCR%20reaction%20-%20its%20application%20to%20mapping%20and%20gene%20tagging%20in%20Brassica.pdf
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et al. 2006). All QTL analyses were conducted using the ASREML-R package (Butler et al. 2007). 
Association mapping was carried-out as described previously (Raman et al. 2010). 

 
Results and Discussion 

Natural variation in days to first flower, days to last flower, duration of flowering, and response to 
vernalisation was observed in the 188 genotypes grown under controlled and field conditions. The 
flowering time ranged from 31 to 153 days under unvernalised conditions (Fig 1) as compared to 31 to 
87 days under vernalised conditions. 

  
 

 

 

 

 

 

 

 

 

Fig 1: Phenogram showing natural variation in flowering time in 188 genotypes of Brassica. 

 

This strongly suggested that vernalisation regulates flowering time in Brassica genotypes investigated 
in this study. Some of the Australian canola varieties such as CB Triology, CB Trigold, CB Tanami, 
and CB Pilbara didn‟t significantly respond to vernalisation. In order to determine location, size and 
effect of QTLs controlling flowering time, we performed QTL analysis utilising a framework molecular 
map developed in the DH population from a cross between the Australian cultivars Skipton/Ag-
Spectrum. QTL analysis indicated that flowering time is a complex trait and is controlled by at least 38 
loci with LOD ≥ 2.0, localized on chromosomes A1, A2, A3, A4, A5, A6, A7, A10, C1, C2, C3, C4, C5, 
and C6. These loci accounted for between 2% and 56% of the total genotypic variation. Flowering 
traits exhibited low to high heritability values ranging from 36% (duration of flowering under vernalised 
conditions) to 89% (days to first flower). Some of QTLs identified are shown in Table 1. 

Table 1: Localisation of QTLs associated with days to flower under unvernalised conditions in a DH 
population from Skipton/Ag-Spectrum 

 

Chr Left  Marker Right Marker LOD Score %Gen Var (r
2
) Additive Effect 

A1 XbrPb-808330 Xra3-e05b 2.4 6.0 Skipton 

A1 Xol12-F11 XbrPb-808614 2.8 3.4 Ag-Spectrum 

A3 XbrPb-839739 XbrPb-658284 12.0 21.4 Ag-Spectrum 

A6 Xcb10006 Xbrms227 4.2 3.8 Ag-Spectrum 

A7 Xbrms186 Xna12-e09 5.8 6.5 Skipton 

C2 XbrPb-660999 XbrPb-661396 10.5 15.8 Skipton 

C3 Xcb10079a XbrPb-661557 9.9 10.2 Ag-Spectrum 

C7 XbrPb-660971 XbrPb-660868 4.7 5.9 Skipton 
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We verified some of our QTL analysis results using the association mapping (AM) approach. All the 
188 accessions were genotyped using 1,426 markers based upon DArT and SSR markers and further 
utilised for AM analysis. Some of the major genomic regions conditioning flowering time were similar. 
Aligning genetic regions that showed significant association with flowering time in the doubled haploid 
population with the genome of B. rapa, allowed us to co-localise associated markers with published 
candidate genes that control flowering time in Arabidopsis and Brassica species. In order to identify 
SNPs underpinning phenotypic variation for flowering time, we also analysed the whole genome GAIIx 
sequence data generated from parental lines Skipton and Ag-Spectrum used for mapping flowering 
time QTLs. Results on such SNP variants will be presented.  

 

Conclusion 

Our results indicated that both the QTL and AM approaches are suitable for associating phenotypic 
variation for flowering time in Brassicas with markers, and with candidate genes causing such 
variation. This knowledge has enhanced our understanding of the molecular mechanism controlling 
flowering time in the adapted germplasm available to Australian commercial canola breeding 
programs. 
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