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Abstract 
Flowering time and photoperiod sensitivity in rapeseed (Brassica napus L.) are two important agronomic traits that relate to 

developing cultivars with wide geographical adaptability. The objective of this study was to dissect the genetic control of the two 
traits into the various components such as the main-effect quantitative trait loci (QTLs), espistatic QTLs and QTL-by-environment 
interactions (QEs). Doubled haploid (DH) lines were produced from an F1 between two spring B. napus canola varieties 
Hyola401 and Q2 which displayed low and high sensitivity to photoperiod, respectively. The data on flowering time of the DH 
lines were collected from the field experiments conducted in two locations, one location with a short and the other with a long 
photoperiod regime over two years. A genetic linkage map was constructed that comprised 248 marker loci including 82 SSR, 94 
SRAP and 72 AFLP markers. Further QTL analysis resolved the genetic components of flowering time and photoperiod 
sensitivity into the main-effect QTLs, epistatic QTLs and QEs. A total of 7 main-effect QTLs and 11 digenic interactions 
involving 21 loci located on 13 out of the 19 linkage groups were detected for the two traits. In addition, three main-effect QTLs 
and four pairs of epistatic QTLs were involved in QEs showing important effects on flowering time. Among the seven main-effect 
QTLs, the one on linkage group 18 was revealed to simultaneously affect days to flower (DTF) and photoperiod sensitivity (PS) 
and explain for the highest percentage of the phenotypic variation. The implications of the results for B. napus breeding have been 
discussed. 
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Introduction 
Flowering is an important and complex adaptive trait for oilseed production conditioned by environmental factors 

(photoperiod and temperature), and internal genes and the interactions of genes (Teutonica & Osborn, 1995; Camargo & 
Osborn, 1996; Osborn et al., 1997; Robert et al., 1998). Brassica napus is a long-day plant, indicating that it can flower and be 
harvested earlier under long day than short day (Butruille et al., 1999; Ferreira et al., 1995). Besides temperature, photoperiod 
is another key factor which decides a plant flowering and setting seed or not (Clark et al., 1995; Juenger et al., 2005; 
Lagercrantz et al., 1996; Putterill et al., 1995; Yano et al., 2000). To our knowledge, most spring B. napus varieties from 
Canada and Europe are sensitive to photoperiod and flower early in the long-day condition but become very late under the 
short-day regime. Q2 is a Canadian spring canola cultivar with a high PS thereby limiting its cultivation in the traditional areas. 
But Hyola401, one spring canola cultivar, exhibiting a low PS, is grown not only in the traditional areas as a summer crop 
under the LD condition but also in the tropical areas as a winter crop under the SD condition (Kennard et al., 1994; Song et al., 
1995). As a result, in order to ensure optimal pollination and seed production, it is essential that flowering takes place at an 
optimal time of the year. 

Photoperiod sensitivity is controlled genetically and interacts with other flowering genes to condition flowering time, thus 
limiting geographic adaptation of plants. The genetic control of photoperiod sensitivity have been studied successfully in 
modern plants rice and Arabidopsis thaliana (Putterill et al., 1995; Yano et al., 2000), but as for the number of genes and type 
of their interactions, it is inconclusive so far. 

The rapid development of molecular marker technology has facilitated the mapping of QTLs associated with DTF in B. 
napus and other Brassica species (Li & Quiros, 2001; Vos et al., 1995). Many main-effect QTLs controlling DTF in B. napus 
and other Brassica have been identified using DH and other populations (Axelsson et al., 2001; Bohuon et al., 1998; Butruille 
et al., 1999; Camargo & Osborn, 1996; Lan & Paterson, 2000; Osborn et al., 1997; Robert et al., 1998; Teutonica & Osborn, 
1995). 

The quantitative nature of DTF in Brssica species has been summarized by Osborn and Lukens (2003). But how to 
dissect the genetic components, especially to consider epistasis and QEs which play an important role in affecting DTF in rice 
and Arabidopsis was not described in detail for a lack of appropriate analysis tools (Li et al., 2003; Murfet, 1977; Yu et al., 
2002; Yue & Xiong, 2005). Fortunately, the QTLMAPPER 1.6 developed by Wang et al (1999). succeeded in dividing the total 
effects into three effects: main, epistatic and QE effects, and quantifying these effects. The objectives of this study were to 
identify QTLs controlling DTF and PS in one Brassica napus DH population derived from Hyola401×Q2. 
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Materials and methods 
plant materials and field experiments: The materials used in this study were two spring canola B. napus cultivars 

Hyola401 and Q2, exhibiting a low and high photoperiod sensitivity, respectively. Doubled haploid (DH) plants produced 
from F1 plants of the cross Hyola401×Q2 using the microspore culture developed by Shi and Liu (1993). DH population and 
their parents, were grown in the summer-autumn growing season in Hezheng (35°20’ N, 103°21’E, China, 2003 and 2004) 
with a 14.3 h day length and a 15.1°C average temperature and in the autumn-spring growing season in Zhaoqing (23°16’N, 
112°56’ E, China, 2003 and 2004) with a 10.1 h day length and a 15.5°C average temperature. At each location a randomized 
complete block design was used with two replications. Each DH line and parent comprising 40-45 individuals planted in two 
rows with 15 cm between plants and 30 cm between rows. 

traits measurements: DTF was recorded as the number of days from the sowing date to the date when 50% of the plants 
in one DH line or parent had at least one open flower. The mean DTF of each DH line was used for QTL analysis. The degree 
of PS of each DH line or parent was calculated by the delay in DTF in Zhaoqing as compared to DTF in Hezheng. 

DNA markers analysis: Total genomic DNA was isolated using a modified SDS method (Li et al. 1994).A total of 248 
marker loci that comprised 82 SSR (simple sequence repeat), 72 AFLP (amplified fragment length polymorphism) and 94 
SRAP (sequence-related amplified polymorphism) loci were detected. The SSR, AFLP and SRAP markers were designed 
according to http://ukcrop.net/perl/ace/search/BrassicaDB, Vos et al. and Li et al., respectively. The protocols of SSR and 
AFLP were followed as described by Piquemal et al. (2005) and Liu et al. (2005), respectively. The SRAP system was based 
on the procedure of AFLP selective amplification described by Vos et al (1995). with only one modification, 100ng of 
genomic DNA. Amplifications were carried out in a MJ Research PTC-225 thermocycler (MJ Research, Waltham, Mass.) 
using the cycling parameters described by Li et al..The PCR products were separated on a 6% denaturing polyacrylamide gel 
at 85W for about 2.5 h and visualized by the silver staining system (Promega, Madison, Wis.). 

data analysis: A genetic linkage map comprising 248 marker loci was constructed using MAPMAKER 3.0 (Lincoln et al., 
1992). QTLMAPPER 1.6 based on a mixed linear model approach (Zhu & Weir, 1998), which estimates QTL main effects, 
epistasis, as well as predicting QE interaction effects, treating the locations as two environments, was employed to assess 
QTLs controlling the PS and DTF. In the analysis, the likelihood ratio (LR) and t-test were combined to test the significance of 
the single-locus QTL additive effects, epistatic effects and the QTL by environment (QE) effects. The LR value corresponding 
to P=0.005 (equivalent to LOD=3.2 for df=4) was used as the threshold for claiming the putative main-effect, epistatic QTLs 
or QEs. The peak points of the LR in the linkage map were taken as the putative positions of the QTLs. When a QTL was 
involved in more than one epistasis, its position and additive effect were taken from the point showing the largest effect. The 
relative contribution of a genetic component was calculated as the proportion of phenotypic variance explained by that 
component in the selected model. 

Table 1 Descriptive statistics of DTF and PS for the parents and the DH population observed in the two locations (Hezheng and 
Zhaoqing) (SD standard deviation) 

Traita Location Parent (mean ± SD) DH population 

  Hyola401 Q2 mean ± SD Range Skewness Kurtosis 

Hezheng 47.5±0.5 54.5±0.7 54.3±5.4 44.0 – 70.0 0.49 -0.38 
DTF 

Zhaoqing 89.5±2.1 105.5±0.7 98.9±14.7 55.0 – 121.0 -1.57 1.65 

PS  42.0±1.4 51.0±1.4 44.6±12.2 -7.0 – 64.0 -1.63 1.86 
aAbbreviations are described in the abstract 

Results 
measurements of DTF and PS: Table 1 shows a summary of the descriptive statistics of DTF and PS for the two parents 

and DH lines. Highly significant differences between the parents were detected using the least significant difference (LSD) test 
at the 0.01 probability level for the two traits. Q2 had always a greater DTF and PS than Hyola401 at both locations, implying 
that Q2 was more sensitive to photoperiod than Hyola401. Furthermore, the DTF difference between two parents was less in 
Hezheng (7 days) than that in Zhaoqing (16 days), indicating that photoperiod sensitivity difference of two parents can be 
displayed more significantly in the short day condition. Figure 1 shows the distribution of the two traits in parents and DH 
population. A certain number of DH lines showed transgressive segregations in both directions for the two traits at the two 
locations, showing flowering time and PS as typical quantitative traits. In addition, the LSD (least significance difference) test 
detected significantly different DTF of the DH lines (P<0.01) between Hezheng and Zhaoqing. A two-way ANOVA revealed 
that there were highly significant differences between the two locations (environments) and also highly significant 
genotype-by-environment interactions for DTF in addition to the major genotype effects (Table 2). 

Table 2 A two-way ANOVA for DTF in the DH population evaluated in two locations 
Variationa df MS F P F0.01 

G 148 3342.51 947.28 ** 0.00 1.38 
E 1 13692.21 3880.44 ** 0.00 6.72 

G × E 148 147.62 41.83 ** 0.00 1.38 
Error 298 3.53    

** means significance at 0.01 level, aG, Genotype; E, environment; G × E, genotype-by-environment interaction 
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Table 3 Main effects, digenic epistatic effects and environmental interactions of QTLs detected by two-locus analysis using 
QTLMAPPER 1.6 for DTF at the likelihood ratio LR-threshold of 14.9 (equal to a chi-square value for df=4 at P=0.005) combining the 

field data from Hezheng and Zhaoqing. 
Ch-Inia Flanking markers QTL Ch-Inja Flanking markers QTL LOD ai

b h2 ai
e aj

b h2 aj
e aaij

c h2 aij
e aei

d h2 aei
e aej

d h2 aej
e aaeij

d h2 aaeij
e

2-5 em16-me2c - em15-me9b  2-8 em15-me9c - EA5-MG6d  4.64     3.19 3.10   -3.06 0.97 7.09 0.73
2-8 em15-me9c - EA5-MG6d  6-8 Ol11-B05b - Na12-E02  6.46     -1.29 4.18     -2.45 1.33

4-5 EA6-MG11c - EA3-MG4d  10-22 CB10524 - em2-me2b  4.91         3.66 0.77 2.75 0.41

5-2 Na14-E11 - Na12-E03b  18-3 em6-me7b - EA9-MG12b  24.28         6.33 1.17   
5-32 em10-me5c - em10-me7d  5-38 em15-me9a - em4-me10b dtf5 9.57   3.98 11.43 1.12 4.14   3.33 1.60   

6-9 Na12-E02 - CB10569  11-7 EA3-MG11d - EA3-MG16b  17.57         5.86 0.86   

11-8 EA3-MG16b - EA7-MG8b dtf11 11-12 Ra2-E12 - em8-me8c  17.65 3.68 18.47   0.89 1.45 6.48 1.45     

18-4 EA9-MG12b - em5-me9  18-7 EA1-MC8d - em6-me7c  31.13     2.01 2.44 -6.21 0.67   3.30 0.59
18-5 em5-me9 - EA9-MG6 dtf18 18-8 em6-me7c - EA3-MG4c  27.19 -4.74 28.44     -6.35 1.23     

aCh-Ini and Ch-Inj represent the chromosome number-interval of the points being tested in the analysis 
bai and aj are the additive effects of the test points i and j, respectively; a positive values of ai and aj implies the Hyola401 genotype having a positive effect on the 

trait 
caaij is the effect of additive-by-additive interaction between points i and j; a positive value implies the parental two-locus genotypes having a positive effect and 

the recombinants having a negative effect 
daei, aejand aaeij are effects of the environmental interaction of locus i, j and epistasis, respectively; a positive value implies that the effect in Zhaoqing is larger 

than that in Hezheng 
eh2 ai, h2 aj, h2 aaij, h2 aei, h2 aej and h2 aaeij are the percentages of the phenotypic variations explained by ai, aj, aaij, aei, aej and aaeij, respectively 

Table 4 Main effects and digenic epistatic effects of QTLs detected by two-locus analysis using QTLMAPPER 1.6 for PS at the 
likelihood ratio LR-threshold of 14.9(equal to a chi-square value for df=4 at P=0.005) 

Ch-Inia Flanking markers QTL Ch-Inja Flanking markers QTL LOD ai
b h2 ai

d aj
b h2 aj

d aaij
c h2 aij

d

3-2 EA5-MG6c - 
EA3-MG16d ps3 3-6 em12-me9c - Ol10-B06  5.25 -3.98 8.35   4.08 5.77

3-7 Ol10-B06 - em7-me10e  19-6 em2-me1a - em2-me1b  6.30     3.18 5.31
4-20 CB10330 - em6-me7a  8-4 Na12-A02a - EA1-MC8e  5.40     2.54 4.10
9-6 Na10-C01b - CB10103b  16-1 CB10034b - BRAS050b  4.10     3.22 4.30
10-1 Na12-H04 - em2-me2a  14-3 em10-me7c - CB10369  8.46     -3.90 2.02

14-1 em10-me10b - 
em10-me5b ps14 14-5 em10-me10f - 

EA1-MC8a  8.75 -4.78 12.04     

18-1 EA4-MG5a - Na12-H09c  18-5 em5-me9 - EA9-MG6 ps18 15.52   -3.08 24.99 -3.12 6.11
10-6 EA5-MG6a - em15-me6c ps10    8.20 -3.44 7.94     

aCh-Ini and Ch-Inj represent the chromosome number-interval of the points being tested in the analysis 
bai and aj are the additive effects of the test points i and j, respectively; a positive values of ai and aj implies the Hyola401 genotype having a positive effect on the 

trait 
caaij is the effect of additive-by-additive interaction between points i and j; a positive value implies the parental two-locus genotypes having a positive effect and 

the recombinants having a negative effect 
dh2 ai, h2 aj, h2 aaij, are the percentages of the phenotypic variations explained by ai, aj, aaij, respectively 

linkage map: A total of 248 loci covered all 19 chromosomes with a total genetic distance of 1634.7 cM and an average 
genetic distance of 6.6 cM between adjacent marker loci. The 82 SSR marker loci from Piquemal et al. corresponded well 
with his map in the order. (Fig. 2)  

 
P1: Hyola401, P2: Q2 

Figure 1 The frequency distribution for DTF and PS in the DH population derived from two spring B. napus cultivars, ‘Hyola401’ and ‘Q2’ 
with a low and high photoperiod sensitivity, respectively. 
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Figure 2  Distribution of main-effect QTLs, epistatic QTLs and QEs on the linkage map as detected by QTLMAPPER 1.6 

 
QTL for days to flowering (DTF): Three main-effect QTLs controlling DTF, dtf5, dtf11 and dtf18, located on LG5, LG11 

and LG18, respectively, were identified in this DH population by combining the field data from Hezheng and Zhaoqing (Table 
3, Fig. 2) and they together accounted for 58.3% of the phenotypic variation. The alleles from Hyola401 at dtf5 and dtf11 
increased DTF by 4.0 and 3.7 days, respectively and explained for a total of 29.9% of the phenotypic variation. The allele 
from Q2 at dtf18 increased DTF by 4.7 days and accounted for 28.4% of phenotypic variation which was the highest effect 
among 3 main-effect QTLs. There were 5 pairs of loci involved in epistatic effects. Furthermore, 2 pairs of the 5 loci involved 
2 of the 3 main-effect QTLs, dtf5 and dtf11. Among them, the parental two-locus genotypes seemed to increase DTF for 4 
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pairs while the recombinant two-locus combinations increased DTF only for the remaining 1 pair. The total epistatic effects 
explained for 15.3% of the phenotypic variation. All of 3 main-effect QTLs and 4 pairs of epistatic QTLs were involved in the 
environmental interactions. The overall QEs accounted for 11.8% of the phenotypic variation. 

QTL for photoperiod sensitivity (PS): A total of 4 main-effect QTLs conditioning PS, ps3, ps10, ps14 and ps18 were 
revealed on LG3, LG10, LG14 and LG18, respectively (Table 4). Compared with Hyola401, the alleles from Q2 at all the 4 
main-effect QTLs resulted in higher PS. In all, these QTLs explained for 53.3% of the phenotypic variation. Epistatic effects 
were detected for 6 pairs of loci, but only 2 of the 6 pairs involved 2 main-effect QTLs, ps3 and ps18. The total epistatic 
interactions accounted for 27.6% of the phenotypic variation. 

Discussion 
In this study, we mapped QTLs for two important agronomic traits, DTF and PS in Brassica napus, by combining field 

data from two environments with different photoperiod regimes, 14.3 h and 10.1 h daylength over two years. 
A two-ANOVA detected the large genotype-by-environment interactions in the DTF trait variation, which was reflected 

in the large number of QEs indentified in the QTL analysis. It was suggested that QEs might play important roles in 
conditioning flowering time of plants. However, for QEs and epistasis, they were roughly investigated by a two-ANOVA in 
the previous studies. As a result, the analytical tools need to be developed to dissect and more precisely quantify the QEs 
components.(additive-by-environment interactions; esptatic-by-environment interactions). Nonetheless, the QTLMAPPER 1.6 
developed by Wang et al (1999). succeeds in partitioning the total effects into main effects, epistatic effects and QE effects, and 
quantifying their effects in this study. For the first time, epistatic interactions and QEs relating to flowering time were analyzed 
in detail and quantified in Brassica napus by using QTLMAPPER 1.6 developed by Wang et al.. 

The present study revealed three main-effect QTLs explaining for 58.3% of the phenotypic variation of DTF. The QE 
interactions accounted for 11.8% of the variation including the 8.7% additive-by-environment and 3.1% 
epistatic-by-environment components. This result indicated that flowering process was sensitive to environmental changes. 
The previous studies reported about 3 to 7 main-effect QTLs accounting for 50-70% of the total variation of flowering time in 
B. napus. The four main-effect QTLs for PS together explained for 53.3% of the total phenotypic variation. It was interesting 
that the epistatic interactions for PS accounted for a high portion of the variation (27.6%), implying a complex genetic basis of 
the trait. One main-effect QTL, dtf18 or ps18, was located between one co-dominant SRAP marker em5-me9 and one 
dominant AFLP marker EA9-MG6 on LG18 and accounted for the largest percentage of the phenotypic variation, 28.4% for 
DTF and 25.0% for PS (Table 3, 4). This co-localization may be explained very well by a high correlation between DTF and 
PS (r2=0.59, p<0.01). In addition, the pleiotropic effects or tight linkage of genes could be another explanation of this 
co-localization. Furthermore, the SRAP marker, a simple and efficient marker system based on PCR amplification facilitates 
easily being used in practical manipulation. As a consequence, this QTL can serve for marker-assisted selection (MAS) in 
Brassica napus breeding program. 

Sernyk et al (1983).and Schuler et al (1991). drew one conclusion by extensive comparison studies that flowering time in 
Brassica napus always exhibited obvious transgressive segregation, but not heterosis. In this study, it is also very clear that the 
transgressive segregation can be observed in both directions in the DH population for DTF and PS, thereby indicating that the 
two traits were conditioned by polygenes and also that the two parents contain genes controlling earliness, lateness and 
photoperiod sensitivity. It is expected that most of the DH lines and two parents flower later in short-day Zhaoqing than 
long-day Hezheng. But among 149 lines, there are 8 DH lines flowering earlier in Zhaoqing than in Hezheng, which is likely 
due to temperatures differences at the two locations. It was thus concluded that these 8 DH lines were not sensitive to 
photoperiod. In addition, some alleles from the early-flowering parent ‘Hyola401’ increase DTF, namely delay flowering 
(positive values in ai and aj in Table 3), but those from the late-flowering parent ‘Q2’ decrease DTF, namely hasten flowering 
(negative values in ai and aj in Table 3). This kind of effect has been detected in some QTL analysis and gives us another 
genetic explanation for transgressive segregation. As for application in breeding, it has been studied quit successful to select 
early-flowering individuals from predominantly late genotypes because numerous genes segregate always toward promoting 
flowering in higher plants. Out of 248 marker loci used to build genetic linkage map, 82 SSR marker loci from Piquemal et al. 
correspond well with his map in the order (Fig. 2), indicating a good collinearity of SSR markers in Brassica napus and the 
homology of different Brassica napus cultivars (Lombard & Delourme, 2001; Lagercrantz et al., 1996; Piquemal et al., 2005; 
Axelsson et al., 2001). 

Conclusion 
In this study we analyzed the QEs affecting flowering time in detail for the first time in Brassica napus. The results 

showed that QEs play important roles in the genetic control of flowering process. As a consequence, taking into account 
implications of QEs besides main-effect QTLs and digenic interactions in practical breeding program may help improve 
breeding efficiency. 
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