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Editorial  
Happy new year 2026! 

  

After the successful Technical Meeting in Cambridge in 2025, the focus is now fully on preparations for 

the big International Rapeseed Congress (IRC) in Paris 2027. 

Much of the preparatory work is expected to be about how rapeseed can meet future demands for 

climate adaptation.  

 

From all over Europe, we hear how insect control is a key issue to solve with fewer mode of actions in 

rapeseed, a crop that both loves and is loved by pollinating insects. Serious pathogens such as clubroot 

continue to conquer agricultural lands, climate is a serious threat for some and an opportunity for oth-

ers, but I am sure science will overcome the challenges in our fantastic crop.  

Science will overcome and will do it quicker if we cooperate, network, and meet around the globe.  

 

Another meeting that needs a host is the next Technical Meeting in 2029. The board asks for candidates, 

and we hope to see some prospects in the first half of 2026.  

 

May the coming year bring you prosperity, good health, and immense joy. 

Looking forward to hearing from you in the upcoming oilseed activities in 2026. 

 

Albin Gunnarson GCIRC President 
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Activity/ News of the association 
Insights from the GCIRC Technical Meeting 2025 at Cambridge, April 9-

10, 2025 
The GCIRC Technical Meeting, hosted by NIAB at Cambridge on April 9 and 10, 2025, covered a wide 

range of topics, from rapeseed nutrition and fertilization to genetics, disease and pest management, 

and regulatory developments in genome editing.  

 

Most of the presentations and posters are available for GCIRC members on the GCIRC website.  

 

We warmly thank Colin Peters and NIAB for their involvement in preparing the logistics and program of 

this 2025 GCIRC Technical Meeting.  

 

 
Colin Peters (NIAB) introducing the Technical meeting 

 

This short report has been elaborated with the support of the Terres Inovia team, present at the meet-

ing. 

Rapeseed nutrition and fertilization 

Five presentations were devoted to rapeseed nutrition and fertilization, two of which focused on culti-

vars nitrogen use efficiency (NUE), and two on estimating greenhouse gas (GHG) emissions associated 

with this crop. 

The first presentation by Adam Stepien (PSPO) concerned the methodology used in Poland to estimate 

GHG emissions from rapeseed cultivation, in order to contribute to the European comparison database. 

The results established a median of 2.3 tons of CO2 equivalent per hectare of rapeseed, with more 

than 50% of emissions linked to the use of nitrogen fertilizers. These nitrogen-related emissions were 



 
 

 

GCIRC NEWSLETTER No.18, January 2026                                                                      4 
 

 

 

divided into 50% due to N2O emissions from the soil, mainly caused by nitrogen fertilizers, and 25% 

due to fertilizer production and transport. With a yield average in Poland of 4 tons per hectare, emis-

sions per ton of seed produced were 0.6 t CO2eq/t of rapeseed. One limitation of this approach was 

the lack of uniformity in the calculation method between countries, which makes result comparisons 

difficult. 

Christina Baxter (ADAS, UK) presented the work carried out in Great Britain by the “YEN zero” sub-

group of the Yield Enhancement Network (YEN), which aims both to reduce agricultural GHG emissions 

and to increase yields. Farmers, participating in this network, calculated that their median emissions 

for rapeseed amounted to 2.5 t CO2eq/ha. Rapeseed appeared as the crop generating the highest GHG 

emissions per hectare, a level very close to that of bread wheat, but twice that of oats and five times 

that of protein peas. The distribution of rapeseed emissions within the network was as follows: 60% 

came from nitrogen fertilizers (20% for production and transport, 40% for N2O emissions in the field), 

25% were due to denitrification of crop residues, 12% to fuel, and 2% to the production and transport 

of non-nitrogen fertilizers. The network's recommendations for reducing these emissions included op-

timizing the nitrogen fertilizers use (via drip lines or nitrification inhibitors), using cover crops, and 

choosing low-carbon crops for crop rotation. 

Emile Lerebour (Terres Inovia, France) presented an overview of nitrogen fertilization calculation meth-

ods in France and worked to develop a new dynamic method based on estimating the nutritional status 

of plants during cultivation.  

Regarding nitrogen use efficiency (NUE), a Canadian presentation (Sally Vail, AAFC) traced its evolution 

for different rapeseed varieties since the 1960s. The introduction of hybrids initially led to a drop in 

NUE due to their high nitrogen requirements for low yield gains compared to landraces. NUE has since 

returned to the level of the old lines thanks to increased yield potential and the associated slight in-

crease in nitrogen requirements. These presentations highlighted the importance of proximity sensors 

and remote sensing in assessing nitrogen uptake by the different genotypes studied. 

Trials conducted in Switzerland (Alice Baux, Ivan Hittpold) on the association of rapeseed with frost-

sensitive legumes were unable to demonstrate any significant difference between associated and non-

associated methods in terms of rapeseed nutrition, possibly due to the high levels of nitrogen availa-

bility in the soil. The work is continuing.  

Finally, Anne-Charlotte Wallenhammar (SLU, Sweden) demonstrated the benefits and limitations of 

rapeseed-legume associations in organic farming under Swedish conditions for improving nitrogen 

availability and limiting the impact of stem weevils. The presentation concluded that these combina-

tions were beneficial in nitrogen-poor conditions and that slow-growing clover species should be used 

to limit competition, with planting in the second half of August to ensure legume growth.  

 

Agronomy and genetics 

Combining agronomy and genetics, the work of the Australian GRDC (Matthew Nelson) focused on the 

possibility of deeper sowing to exploit residual moisture. One issue raised was the hypocotyl length as 

a limiting factor for deep sowing, as Australian varieties have relatively short hypocotyls compared to 

foreign varieties. A phenotyping method, under controlled conditions was developed, confirming in the 

field that varieties with the best emergence performance were those with long hypocotyls. A project 

has been launched in Australia to develop these varieties. 
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The work of the JKI (Germany) presented by Daniel Valle Torres, involving various devices (300 trials of 

F1 hybrids in different environments and cultivation practices, plant-by-plant studies with genomic 

data) showed differences in genetic and physiological responses, and the value of combining genomic 

and phenomic prediction to improve the predictive capacity for nitrogen efficiency traits.  

Liang Guo (Huazhong Agricultural University, China) focused on the phenotypic plasticity of rapeseed 

oil content, which depended on light and temperature conditions, in response to climate change. Be-

yond adjusting sowing dates, research was moving towards the development of high-oil-content vari-

eties adapted to reduced light conditions.  

A Canadian presentation (Habibur Rahman, University of Alberta) explored the search for genetic di-

versity through crosses between Brassica napus and Brassica oleracea. This work revealed the exist-

ence of alleles of interest for agronomic traits and promising heterosis effects on grain yield in F1 hy-

brids.  

Mukhlesur Rahman (North Dakota University) also presented work undertaken in the United States, 

notably the identification of sources of resistance to phoma and verticillium, with marker mapping. 

 

Pest management 

Four presentations dealt with pest management.  

Agroscope (Eve-Anne Laurent, Alice Baux, and Yvan Hiltpold) presented the effects of combining rape-

seed with field beans (winter or spring) to reduce damage caused by various insects (winter flea beetle, 

rapeseed stem weevil, pollen beetle). An original approach using artificial plants made it possible to 

distinguish the effects of physical or visual barriers from chemical effects (volatile compounds). The 

results showed a reduction in cruciferous flea beetle bites for the three tested methods and a reduction 

in adult winter flea beetle pressure with field beans. In spring, stem weevil attacks and pollen beetle 

pressure were lower for all three methods. Yields were significantly higher with spring field beans, with 

no significant difference compared to winter field beans. The identified mechanisms of action were 

visual or physical confusion (suggested by artificial plants) and chemical confusion, leading to behav-

ioral disturbances in insects. Except for the winter flea beetle, all three mechanisms appeared to be 

involved. 

The Agroscope team (Eve-Anne Laurent) also assessed the resistance/tolerance of varieties to a range 

of pests but found no correlation between insect pressure and yield in their network, with more than 

80% of yield variability explained by the interaction between location and site. The impact of insect 

pressure was considered marginal. Hybrid varieties showed higher yield potential under high flea bee-

tle larvae pressure. Only a weak correlation was found between collar diameter and the number of flea 

beetles per plant. 

The presentation by Terres Inovia (Céline Robert, Nicolas Cerrutti) focused on the three work packages 

of the French R2D2 project aimed at reducing insect damage on a regional scale (1,300 ha): agronomic 

levers in fields, behavioral manipulation techniques (intercropping traps), and improvement of biolog-

ical control.  

Similarly, Samantha Cook (Rothamsted Research, UK) emphasized the future of integrated manage-

ment strategies and the combination of prophylactic levers (from plot to landscape scale) to reduce 

dependence on insecticides, before applying appropriate decision rules as a last resort. In particular, 

she highlighted the use of technological tools such as connected traps to facilitate field monitoring. 
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These approaches elicited mixed reactions from the audience, who emphasized the difficulties of dis-

semination and adoption by farmers without financial compensation. 

 

Diseases and genetics 

Bruce Fitt (UK, University of Hertfordshire) presented a summary of innovative British research on the 

implications of climate change for oilseed pests and diseases. This research predicted an increase in 

the severity of Phoma in the United Kingdom, but a decrease in cylindrosporiosis. It was shown that 

climate change had contrasting effects on different diseases, potentially affecting the resistance of 

oilseed rape and altering the competitive relationships between pathogens. It was highlighted that the 

rise in temperature (from 15 to 25°C) caused loss of resistance of the major Rlm6 gene of Phoma (Lep-

tospaeria maculans). Furthermore, if contamination by L. biglobosa preceded that by L. maculans, the 

growth of L. maculans could be prevented. The optimal growth temperatures differed between the two 

pathogens. 

Henrik Stotz and Yongju Huang detailed work carried out at the University of Hertfordshire on the tem-

perature sensitivity of other phoma resistances (Rlm4, Rlm7-1, Rlm7-2) and continued to model asco-

spore emissions for L. maculans and L. biglobosa, resulting in a model that predicts 50% of spore emis-

sions. For cylindrosporiosis, spore emissions were annual and the development of the disease was de-

pendent on “warm” winters (UK conditions), favored by temperature and humidity conditions.  

Phoma was also the subject of a short presentation by Kevin King on the first detections in Europe of 

Plenodomus biglobosus (Leptosphaeria biglobosa) canadensis’ and resistance to triazole fungicides in 

L. maculans.  

Janetta Niemann presented new markers of resistance to phoma.  

Marian Thorsted (SEGES, Denmark) presented the use of artificial intelligence (AI) based on image anal-

ysis for the assessment of cylindrosporiosis attacks, with results considered equivalent or superior to 

visual ratings, although the model has not yet been tested under conditions of multi-disease attacks or 

weed infestations.  

Finally, Andreas von Tiedemann's work on the regulation of dormancy and germination of soil-borne 

diseases (verticillium and clubroot) showed that root exudates were essential for spore germination 

and that the bacterial microbiome played a fundamental role as a suppressor or inhibitor. 

 

Gene Editing and NGT 

The panel on genome editing, which brought together Mario Caccamo (Niab), Petra Jorash (Euroseeds), 

and Tony Mora (Cibus), discussed how science and politics can work together to facilitate the adoption 

of precision breeding crops (NGT).  

Petra Jorash presented the regulatory status, noting that the European Commission's proposal (2023) 

was still under discussion, requiring another two years of procedures for its implementation after de-

bates in the European Parliament.  

Political debates focueds on intellectual property and patent filings, particularly for NGT1, with impli-

cations for traceability and the reuse of genetic resources. The Parliament opposed the Commission on 

patents and called for GMO-type post-registration monitoring for NGTs, Category 1, which was a red 

line for seed companies. France specifically opposes the recognition of herbicide resistance in Category 

1. 
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The limit of 20 transformations did not have the same impact depending on the ploidy of the species, 

leading to a more limited number of cumulative transformations for a polyploid species (e.g., 4 or 5 for 

a tetraploid). This number of 20 modifications, taken from the scientific literature reviewed by the 

Commission, was considered by the European Union alone, with other countries focusing more on the 

nature of the modifications. Traceability was a major challenge, while changes in nucleotides were de-

tectable, it was very difficult to guarantee the origin of these changes (genomic editing or natural). If a 

seed producer adds new modifications to material that has already reached the 20-change limit, that 

material would move from category 1 to category 2. From the seed producers' point of view, excessive 

regulatory requirements (data to be provided, post-marketing monitoring) could neutralize efficiency 

gains, leading them to favor conventional breeding. 

 

Farm visit  

The farm visit took place on a very large farm (2,000 ha) where mustard (whose cycle prevents flea 

beetle attacks) had replaced rapeseed while maintaining excellent profitability. The farm, managed for 

optimal profitability and to supply traditional British mustard production, used very powerful machin-

ery and modern equipment for high-throughput operations.  

 

GCIRC General Assembly 
The current information on the life of GCIRC has been reported to and validated by the General As-

sembly: activity, evolution of membership, financial situation, provisional budget.  

As usual at the time of the Technical Meeting, a new Board has been established by the GA, involving 

some changes. Former and present boards are listed below:  

 

 

 

Matthew Nelson/CSIRO will replace Rob Wilson for Australia. 

Marcin Matuszszak/IHAR-PIB will replace Katarzyna Mikolajczyk for Poland. 
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Concerning France, Etienne Pilorgé will retire just before/or at the time of the congress. Vincent 

Jauvion/Terres Inovia will work with Etienne Pilorgé for Secretary and should replace him afterwards. 

We are still looking for a representant of the USA, where canola development is progressing. 

 

Next to the General Assembly, the Board elected Albin Gunnarson, Sweden, as President.  

We derogated to the usual practice to elect a president from the country organizing the next IRC, in 

order to facilitate an optimum coordination between GCIRC and the organisation team. The next con-

gress being scheduled in France, and the GCIRC Secretariat being also in France for historical and prac-

tical reasons, choice has been made to elect a president from another European country, namely Swe-

den, with Albin Gunnarson.  

 

This transition has been illustrated at the Gala Dinner: many thanks to Rob Wilson for his involvement 

in the GCIRC and his essential contribution to the success of the IRC16 in Sydney, despite the disrupted 

international context. Welcome to Albin.  

 

 
Former GCIRC President Rob Wilson (Australia, standing right) and  

new President Albin Gunnarson (Sweden, left) speech in the Jesus College dining hall 
 

The General Assembly reports are available for GCIRC members on the website (Publications/Ar-

chives/General Assemblies).
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Next IRC in Paris, France: Save the date 
Message from the IRC organizing Committee: 

“Dear Colleagues,  

We are pleased to announce that the 17th International Rapeseed Congress (IRC) will take place at the 

Palais des Congrès de Paris (France), on April 18th to 21st 2027.  

The IRC, held every four years, creates enduring relationships in the extensive worldwide network of 

rapeseed experts. It is a forum for ideas, innovation and networking, highly respected among partici-

pants from academic and private research, and government, as well as sponsors and exhibitors. This 

edition will be hosted by the French Oil and Protein seeds sector institutions – The technical institute 

Terres Inovia, the interbranch association Terres Univia, and the Federation of Producers FOP – under 

the auspices of the GCIRC.  

Discover the teaser video” 

 

Complementary information:  

Information will be progressively updated on the congress website ( https://ircparis2027.com/ ), and 

on the GCIRC website.  

The key dates are the following:  

- March 30th, 2026: Call for abstracts and registration opens 

- October 2nd, 2026: Abstract deadline 

- November 30th, 2026: Early-bird registration deadline 

- January 15th, 2027: Abstracts announcements 

- April 16th-17th, 2025: Field tour and technical visits 

- April 18th, 2027: Welcome to the congress 

- April 19th, 2027: Congress Day 1 

 

The organizing committee has been working actively for more than one year now to welcome all par-

ticipants in the best conditions. A group of French researchers has already prepared some outlines and 

will contact soon colleagues from other countries to build the scientific committee of the congress.  

 

https://www.youtube.com/watch?v=WfXyOveHDuY
https://ircparis2027.com/


 
 

 

GCIRC NEWSLETTER No.18, January 2026                                                                      10 
 

 

 

An invitation from IOBC group on integrated control in oilseed crops: 

save the date 
Dear Colleagues,  
We are pleased to announce that the 20th IOBC-WPRS Working Group on Integrated Control in Oilseed 
Crops will take place: 

Dates: Tuesday, 29 September – Wednesday, 30 September 2026 
Location: Alnarp, Sweden 

 
Please save the date in your calendars. Further details regarding the program, registration, and accom-
modation will be shared in due course. 
We kindly encourage you to forward this announcement to colleagues and others with an interest in 
oilseed crops. 
We look forward to welcoming you to Alnarp, Sweden, for an engaging and fruitful meeting. 
Best regards, 
Nazanin Zamani-Noor and Ivan Juran 
Convenors, IOBC-WPRS Working Group on Integrated Control in Oilseed Crops 

 

Welcome to New GCIRC members 
We have welcomed 18 new members since February 2025, and a new country is now represented in 
the association: Netherlands. 
 

HANCE Thomas US Canola Association  USA 

VAIL Sally Agriculture and Agri-Food Canada CANADA 

ADRIAENSEN Remy BASF BELGIUM 

TALIBUDEEN Alex NIAB UNITED KINGDOM 

CLAUS Sébastien NIAB UNITED KINGDOM 

WALLACE Margaret NIAB UNITED KINGDOM 

JAVED Muhammad Ashfaq Hope Seeds Company PAKISTAN 

DABROWSKA Katarzyna University College Dublin IRELAND 

GRANT Richard University College Dublin IRELAND 

LOGAN Skori AgGene Inc CANADA 

POREE Fabien BAYER AG GERMANY 

RICHARDS Rosemary AOF AUSTRALIA 

BORGGREVE Rene NUFARM AUSTRALIA 

DUFOUR Cédric AVRIL FRANCE  

LABALETTE Françoise TERRES UNIVIA FRANCE  

PAJIC Vladimir PACIFIC SEEDS AUSTRALIA 

REMIJN Bastiaan Feed Forward BV NETHERLANDS 

ULUOCHA Maduabuchi Daniel Sheffield Hallam University  UNITED KINGDOM 

 
In the meantime, ten persons left the association, mainly for retirement.  
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You may visit their personal pages on the GCIRC website directory, to better know their fields of interest. 
We take this opportunity to remind all members that they can modify their personal page, especially 
indicating their fields of interest to facilitate interactions.  
 
 

Value chains and regional news 

EU reaches deal on gene-edited crops 
PARIS, Dec 4 (Reuters) - The European Union has reached a preliminary deal on how to regulate gene-

edited crops in a move that could ease the development of new varieties in a region long wary of 

biotech innovations in food. 

The EU has debated for years how to regulate so-called new genomic techniques (NGT), which can edit 

the genetic material of an organism without introducing traits from another species. 

Proponents say the technology accelerates naturally occurring mutations and offers a response to cli-

mate and environmental pressures, while critics bracket it with genetically modified organisms as a 

risk to ecosystems and health. 

Under an agreement struck overnight by representatives of EU countries and the European Parliament, 

a first category of NGT crops will be regulated like conventional crops and not require special labelling 

except for seeds. 

However, a second category deemed to feature more complex modifications will fall under the EU's 

stricter GMO regime, including obligatory product labelling. This category will include herbicide-toler-

ant varieties. 

To address concerns over control of NGT patents, the agreement included a requirement for crop de-

velopers to disclose patent details in a public database. 

"The regulation will allow us to develop new plant varieties that are more resilient to climate change 

and require less fertilisers or pesticides," Jacob Jensen, the minister for food, agriculture and fisheries 

in Denmark, which holds the rotating EU presidency, said in a statement on Thursday. 

EU farming association Copa-Cogeca welcomed a "historic agreement", saying it was the only initiative 

so far under the bloc's Green Deal to offer practical solutions for farmers. 

Environmental protection association Friends of the Earth condemned the loosening of rules for "new 

GMOs", calling the deal a "free pass given to the biotech industry". 

The preliminary agreement still needs to be voted on by the European Parliament and the EU's council 

of member states before being put into law. 

Source: Reuters, December 4, 20252:48 PM GMT+1Updated December 4, 2025 Reporting by Gus 

Trompiz; Editing by Kirsten Donovan. 

 

NB: See also in the Publications section, a review by Asif Mukhtar et al,  which focuses on the application 

and progresses of CRISPR/Cas technologies in rapeseed and their  potential to address global agricul-

tural challenges https://doi.org/10.1007/s44154-025-00229-6   

https://doi.org/10.1007/s44154-025-00229-6
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Evolution of the FAO vegetable oils price index: oils prices still at high levels.  
In October 2025, the FAO oilseed price index continued to increase for the third consecutive month, 

gaining 1.2 points (1.3 percent) from September and 1.8 percent from its year-earlier level. (…) The 

continued strengthening of the oilseed index reflected higher prices of soybeans and sunflower seed, 

while rapeseed quotations remained virtually stable. (…) 

The oil-meal price index was virtually steady in October as stable soymeal values, the dominant com-

ponent of the index, offset declines in rapeseed and sunflower meal quotations. (…) 

As for vegetable oils, the increase in the price index reflected higher quotations for palm, rapeseed, 

soy and sunflower oils. International palm oil prices rebounded slightly after easing in the previous 

month, supported by expectations of tighter exportable supplies following Indonesia’s planned in-

crease in biodiesel blending mandates in 2026, despite higher-than-expected production in Malaysia. 

World sunflower oil prices rose for the fourth consecutive month in October, largely due to limited 

supplies from the Black Sea region amid harvest delays and cautious farmer sales. Meanwhile, global 

rapeseed and soy oil prices increased on account, respectively, of persistent tight supplies in the Euro-

pean Union and higher domestic demand in Brazil and the United States.  

 
Read more details on https://www.fao.org/markets-and-trade/commodities-overview/basic-

foods/oilcrops-food-price-indices/en  (October 2025) 

https://www.fao.org/markets-and-trade/commodities-overview/basic-foods/oilcrops-food-price-indices/en
https://www.fao.org/markets-and-trade/commodities-overview/basic-foods/oilcrops-food-price-indices/en
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Global rapeseed production  
IGC expects all-time high in rapeseed area for the 2026/27 marketing year. 

The International Grains Council (IGC) forecasts the global rapeseed area at 44.1 million hectares; 0.2 

million hectares higher compared to the current 2025/26 crop year. In major exporting countries, the 

rapeseed area is expected to decline slightly, while other regions – especially Asia – are projected to 

see moderate expansion. 

In the EU-27, the rapeseed area is forecast to remain unchanged at 6.1 million hectares. However, in 
the southeastern EU, especially in Romania, the strong 2025 harvest may encourage farmers to expand 
their rapeseed plantings. In contrast, other member states are expected to reduce their areas slightly. 
In Russia, the area devoted to rapeseed cultivation is forecast to remain stable at 3.0 million hectares, 
following significant expansion in the current season. By contrast, according to research by Agrarmarkt 
Informations-Gesellschaft (mbH), the area planted with rapeseed in Ukraine is expected to decline 
100,000 hectares to 1.3 million hectares. Nevertheless, the aggregated area in the Commonwealth of 
Independent States (CIS) is expected to reach the second largest level on record, underscoring the 
growing importance of rapeseed as a crop. 
Forecasts for leading exporters Canada and Australia remain particularly uncertain, as sowing will not 
begin for several months. Driven by expectations of brisk international demand, Canada's rapeseed 
area is projected to remain close to its previous average at 8.7 million hectares. Australia's rapeseed 
area is likewise expected to stay unchanged compared to the previous year, at 3.4 million hectares. 
 

 
 

Source: IGC reported by UFOP Chart of the week 48 2025 (https://www.ufop.de/english/news/chart-

week/#kw48_2025 ) 

 

Canola in US 

https://www.ufop.de/english/news/chart-week/#kw48_2025
https://www.ufop.de/english/news/chart-week/#kw48_2025
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“According to the USDA, canola production in the United States is surging, driven by strong demand 

from the domestic biofuel sector. For the 2024/25 season, planted area exceeded 1 million hectares 

for the first time, marking a 13% increase from the previous year and setting the stage for a record 

harvest of over 2.1 million tonnes. Growth has been strongest in North Dakota, Montana, and Wash-

ington, where planted areas hit record highs. Fuelled by policies such as the Renewable Fuel Standard 

(RFS) and California’s Low Carbon Fuel Standard (LCFS), canola oil has become an increasingly valuable 

feedstock for renewable diesel and sustainable aviation fuel, reinforcing the crop’s importance to both 

U.S. agriculture and clean energy.  

 

” 

Source: US Canola Quick Bytes, November 2025  

 

Europe: early crop growth supported by favourable conditions 

 
 

https://myemail.constantcontact.com/November-2025---Canola-Quick-Bytes-.html?soid=1132569525218&aid=Rjd7NFjV5Js
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“In northern Europe (Finland, Sweden and the Baltic countries) and across western to eastern regions 
(France, Germany, Austria, Poland, Czechia and Slovakia), rapeseed crops are developing well, sup-
ported by adequate rainfall and generally mild temperatures. This has resulted in uniformly established 
stands, currently ranging from the five-leaf stage to the formation of side shoots, depending on sowing 
dates. In north-western Europe (France, Belgium, Denmark and north-western Germany), crop hard-
ening slightly delayed by the unusually warm first half of November (…) 
In Hungary, crops are developing well. While recent rains have helped improve top-soil moisture in 
the central and eastern regions of the Great Plains, deeper soil layers remain dry, which could impede 
future crop development unless significant rainfall occurs. In Romania, dry soils in September followed 
by abundant rains made sowing difficult in the southern regions, leading to high heterogeneity in crop 
development, from emergence to advanced rosette, and poor uniformity in late-sown fields; soils re-
main dry along the eastern border. In Bulgaria, sowing is complete and the area may increase this 
year.” 
 
Read more on JRC MARS Bulletin - Crop monitoring in Europe - November 2025 - Vol. 33 No 10 

https://dx.doi.org/10.2760/4463007  

 

 

Scientific news  
Publications 

To the authors: we identify publications through research with 2 key words only: 

“rapeseed” and “canola”. 

If a publication does not contain one of these two words, but for example only Brassica napus or 

terms implicitly linked to rapeseed/canola (names of diseases or insects or genes, etc....), it will not 

be detected. 

 

GENETICS & BREEDING 

Fan, H., Li, J., Huang, W., Liang, A., Jing, L., Li, J., ... & Yang, Z. (2025). Pan-genome analysis of the R2R3-MYB 
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Upcoming international and national events  
 

 
3-6 May 2026, 2026 AOCS Annual Meeting & Expo, Hyatt Regency New Orleans,  

New Orleans, Louisiana, USA 

https://annualmeeting.aocs.org/ 

 

 

 
29-30 September 2026, Alnarp, Sweden. 20th IOBC-WPRS Working Group  

on Integrated Control in Oilseed Crops 

https://wwwuser.gwdguser.de/~iobc/cmeetings.php 

 

https://doi.org/10.3390/agronomy15081872
https://annualmeeting.aocs.org/
https://wwwuser.gwdguser.de/~iobc/cmeetings.php
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18-21 April 2027, Paris France. 17th International Rapeseed Congress 

https://ircparis2027.com/ 

 
 

  
We invite you to share information with the rapeseed/canola community: let us know the    

scientific projects, events organized in your country, crop performances or any  
information of interest in rapeseed/canola R&D.    

   
Contact GCIRC News:    

Etienne Pilorgé, GCIRC Secretary-Treasurer: e.pilorge@terresinovia.fr    
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