GCIRC Association

Global Council for Innovation in Rapeseed and Canola

NEWSLETTER 15, July 2023

Greetings and welcome to GCIRC Newsletter #15, July 2023.

Table of contents


Activity/News of the association:

  • IRC-16 Sydney 2023 – September 24-27, 2023, Australia         
  • GCIRC General Assembly          
  • Welcome to New GCIRC members

Value chains and regional news

  • Australia
  • Rapeseed prices: importance of biodiesel and biodiesel regulations 
  • Yield forecast in Europe
  • European Union and New Breeding Technologies   

Scientific news

  • Some publications from Australia  
  • Publications


Upcoming international and national events



Greetings and welcome to GCIRC Newsletter #15, July 2023.

As always welcome to newsletter #15 and trust that this finds you in good health especially all colleagues in the northern hemisphere as many of you are being affected by the extreme hot conditions. It saddens me that the war in Ukraine continues, but our thoughts and support remain very strong for everyone in Ukraine and none more than our colleagues and the agriculture community. Living so far away it is hard to comprehend the despair of a country at war. 

Globally grain and oilseed supplies will be monitored closely as the northern hemisphere gears up for harvest and what impact heat and drought conditions have.

Canola forecasts in Australia is shaping up to be a mixed bag with area and production numbers trending down on 2022 numbers by around 10-15%. In Western Australia much of the cropping regions in the north and east very dry and outlook for below average rainfall, whereas in the southern areas good soil moisture, and outlook is much better. In the eastern states, South Australia, Victoria and New South Wales have some variation in soil moisture and generally in a stronger position. AOF July crop forecasts are due to be released this week and made available.

At the May GCIRC board meeting, the US advised that they are able to host the 2025   technical meeting, on a good note the UK has shown interest and along with India been asked to submit a formal application by the end of July, to enable appropriate discussion for a decision and announcement at the Sydney board meeting.

Finally, I look forward to seeing the more than 400 delegates already registered in September and encourage it’s not too late to register and participate.

Robert Wilson, GCIRC President


Activity/ News of the association:

IRC-16 Sydney 2023 – September 24-27, 2023, Australia

Welcome Reception – Sunday 24th September.

IRC-2023 is thrilled to announce the Welcome Reception on Sunday 24th September will be held on the luxurious super yacht, The Jackson.  Presented by the hosts GCIRC & AOF, delegates will sail around Sydney Harbour, enjoying breathtaking views of iconic landmarks such as the Sydney Opera House and the Harbour Bridge.

See picture on PdF file

After four difficult years this is GCIRC’s first in person get together, this Welcome Reception Cruise will allow delegates to reconnect with their international colleagues and friends, to engage in meaningful conversations and establish valuable new connections. Delegate will enjoy delectable canapés and refreshments, featuring Australian wines and produce, all prepared by the expert onboard culinary team.  A great way to kick off IRC-2023.


Program - Monday 25th – Wednesday 27th September.

The IRC-2023 Program and Agenda has been finalised after some late tweaking. Featuring Plenary and keynote presentations across an array of topics. The many oral and poster presentations will deliver key research associated to the core Congress themes.

  • Genetics, Genomics & Breeding
  • Agronomy, Physiology & Management
  • Diseases & Pests
  • Products & Quality, End Uses, Economy & Markets

We are excited to have over 400 delegates from 28 countries registered to attend this the 16th IRC in Sydney.


Dinner - Tuesday 26th September.

Sponsored by Nuseed, the IRC-2023 Gala Dinner will be THE social event of the Congress. Set in the ballroom of the iconic Luna Park, delegates will enjoy a three-course meal, drinks, and an evening of star-studded entertainment.  With the backdrop of Sydney Harbour, this will be the perfect way to reminisce about the wonderful sessions, keynotes, and program of IRC-2023. 

A ticket to the dinner is included in the Full Registration ticket, or individual and group tables are also available to purchase.  So why not consider inviting colleagues or clients?


Field Tour – Friday 22nd September

The pre-Congress field tour (which is already sold out/fully booked) will be an action-packed day looking at a diverse range of canola field trials at the New South Wales, Department of Primary Industries (NSW-DPI) research facility.

It is a very impressive site (see photo below) that highlights many diverse trials both public and private. This collaboration allows the industry to showcase the latest releases to canola growers.

Some of what is on show: GRDC National Variety Trial (NVT), Seeding Rates, Nitrogen, Phenology, Herbicide Tolerance, Disease, Frost, Pre & Post emergence chemistry and Fungicide trials, Cropping rotation systems and others.

Many thanks to NSW-DPI and the field team for their contribution, and to GRDC, AGT Seeds, BASF, Bayer, Corteva / Pioneer Seeds, CSIRO, Nuseed, Nutrien Ag, Pacific Seeds, RAGT, ROBE and Syngenta for their support to this field tour.

Also included is a visit to Australia’s latest oilseed crushing plant Riverina Oils (ROBE), Syngenta Seedcare Laboratory and a sheep shearing demonstration.

For delegates arriving on Thursday 21st, we have a welcome function at The Thirsty Crow a local brewery/restaurant and on Friday 22nd there is a dinner at the Magpies Nest a local winery.

Saturday 23rd September, we bus travel to the Nation’s Capital Canberra, where IRC-10 1999 was held. Then on Sunday 24th continue to Sydney arriving at the Sheraton Hotel, Congress venue by approx. 2 pm. Plenty of time to relax or take in some of the amazing sights Sydney has to offer and be ready for the Welcome Harbour cruise at 6:30 pm.

See Picture on Pdf File.


GCIRC General Assembly

The GCIRC General Assembly will be held in Sydney, Australia, on Monday, September 25, 5:30 to 7:00 PM local time, at the Sheraton Grand Sydney Hyde Park, the IRC location.

Only GCIRC members who have paid their annual subscription will vote the resolutions. The meeting will be open to all interested people present at the IRC.


Welcome to New GCIRC members

Since last February, we have welcomed two new members:

  • HU Qiong, Chinese Academy of Agricultural Sciences, CHINA
  • RAHMAN Mukhlesur, North Dakota State University, USA

You may visit their personal pages on the GCIRC website directory, to better know their fields of interest. We take this opportunity to remind all members that they can modify their personal page, especially indicating their fields of interest in order to facilitate interactions.


Value chains and regional news


According to the Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES), National planting to winter crops in 2023–24 is forecast to fall but remains historically high in at 23.3 million hectares. Winter crop production is expected to fall from record highs under expectation of below average rainfall for winter and spring. “Area planted to canola is forecast to fall by 11% to 3.5 million hectares, the second largest area on record. The reduction in area reflects the less favourable start to the season and drier outlook, and to some extent the lower expected returns following recent falls in world canola prices. Grower constraints related to crop rotations have also seen some substitution towards other crops. Following three consecutive record production years, total Australian winter crop production is forecast to fall by 34% to 44.9 million tonnes in 2023–24. This is around 3% below the 10-year average to 2022–23 of 46.4 million tonnes. Yield prospects are forecast to be below average due to the expectation of below average rainfall for winter and spring.” 2023/24 Canola production is estimated to 4,9MT, 3rd largest harvest, but 41% decline after the 2022/23 record (8,2MT) and 2021/22 (6,8MT).

Read more at: https://www.agriculture.gov.au/abares/research-topics/agricultural-outlook/australian-crop-report/overview#summer-crop-production-above-average-but-below-last-seasons-record

The UFOP chart of the week (28 2023) shows that Australia remained primary rapeseed supplier to the EU in 2022/23, with 3,58 MT on a total of 7,3MT.

See Figure on Pdf File.

“At 7.3 million tonnes, EU-27 rapeseed imports from non-EU countries clearly exceeded the previous year's volume of 5.5 million tonnes. This translates to a 33 per cent rise.” (Read more at https://www.ufop.de/english/news/chart-week/#kw24_2023 )


Rapeseed prices: importance of biodiesel and biodiesel regulations 

In its Chart of the week 22 2023, UFOP comments the recent sharp decline in rapeseed prices: “Stock exchange prices for rapeseed have been falling almost continuously since the beginning of the year. Temporarily, they even slid below the level of EUR 400 per tonne for the first time since November 2020. According to the UFOP, this development is partly due not only to expected good global market supply of rapeseed, but also to imports of used waste oils and fats from China and biodiesel produced from them (UCOME - Used Cooking Oil Methyl Ester) in the amount of approximately 500,000 tonnes since the end of 2022. (…) The UFOP has explained that if these biofuel volumes counted twofold against the mandatory quotas in Germany and other EU member states, such virtual crediting to meet GHG quota obligations reduces physical demand accordingly, especially for rapeseed oil-based biodiesel. The association fears that this puts a fundamental question mark over the credibility of sustainability certification. (…) In line with the complex market situation, Paris futures market quotations for rapeseed have been falling virtually unchecked for several months. European rapeseed also lost in value based on slipping crude oil and palm oil prices and a temporary decline in US soybean prices.”

See Figure on Pdf File.

Read more at https://www.ufop.de/english/news/chart-week/#kw24_2023 


Yield forecast in Europe 

According to the JRC MARS Bulletin, published last June 19, 2023 rapeseed yields in the European Union would be slightly lower than in 2022, but remain 6% higher than the 5 years average. The meteorological conditions were unusual and marked by strong contrasts with negative impacts on crop yield expectations in several regions. “Spring was characterised by drier-than-usual conditions in southern Europe, which intensified drought in the Iberian Peninsula, and contrasting wetter-than-usual conditions in many other parts of Europe, including some of the regions affected by drought earlier in the season.”

See Figures on Pdf File.

In Ukraine, high levels of winter crops production are expected, especially for rapeseed with a production forecast of 5,47 MT for 2023 compared to 2,93MT in 2021, due to 79% increase of acreage (2023 versus 2021) and 5% yield increase. If confirmed, this production level will make Ukraine a major rapeseed producer in continental Europe, beyond France and Germany.

Read complete analysis at https://publications.jrc.ec.europa.eu/repository/handle/JRC133186


European Union and New Breeding Technologies 

Adopting a position on the use of new breeding technologies based on CRISPR is a matter of reflexion for some time in Europe. The European Commission has put forward a proposal to update European Union (EU) rules to reflect greater precision of new gene editing techniques, saying that the move would give farmers more resilient crops and reduce the use of chemical pesticides and offer consumers food with higher nutritional value.

To summarize the past process, the EU's top court had ruled in 2018 that genome-editing techniques should be governed by GMO rules, then the Commission launched a review in 2021 after concluding that GMO legislation from 2001 was "not fit for purpose".

The EU Commission proposes to split new genomic technique (NGT) plants into two categories: those that could also occur naturally or by conventional breeding would be exempted from GMO legislation and labelling requirements. Plants will qualify for the first category if there are no more than 20 genetic modifications. All other NGT plants would be treated as GMOs, requiring risk assessments and authorization. A faster track approval process would apply for the second category of plants if, for example, they are more tolerant to climate change or require less water or fertilizer.

The proposal needs approval from the European Parliament and EU governments and may be revised. However, the proposal is likely to be opposed by environmental groups that would like the 2001 rules on GMO to be retained.

Source:  Reuters, July 5.

Some recent illustrations of the use of CRISPR technologies in rapeseed can be seen in the literature section on Genetics and Breeding of this newsletter, applied to diseases resistance and to ALA content notably.


Scientific news

Some publications from Australia 

Bell, L., Whish, J., Simpfendorfer, S., Baird, J., Hertel, K., & Erbacher, A. Canola in northern farming systems. REFERENCE

Dillon, S., & Helliwell, C. Optimisation of canola phenology in diverse Australian growing environments using genomics. REFERENCE

Congdon, B. S., Baulch, J. R., Filardo, F., & Nancarrow, N. (2023). Turnip yellows virus variants differ in host range, transmissibility, and virulence. https://doi.org/10.21203/rs.3.rs-2968728/v1



To the authors: we identify publications through research with 2 key words only: “rapeseed” and “canola”.

If a publication does not contain one of these two words, but for example only Brassica napus or terms implicitly linked to rapeseed/canola (names of diseases or insects or genes, etc.…), it will not be detected.



Amas, J. C., Bayer, P. E., Hong Tan, W., Tirnaz, S., Thomas, W. J., Edwards, D., & Batley, J. (2023). Comparative pangenome analyses provide insights into the evolution of Brassica rapa resistance gene analogues (RGAs). Plant Biotechnology Journal. https://doi.org/10.1111/pbi.14116

Yang, Z., Wang, S., Wei, L., Huang, Y., Liu, D., Jia, Y., ... & Yang, Q. Y. (2023). BnIR: A multi-omics database with various tools for Brassica napus research and breeding. Molecular Plant, 16(4), 775-789. https://doi.org/10.1016/j.molp.2023.03.007

Katche, E. I., Schierholt, A., Becker, H. C., Batley, J., & Mason, A. S. (2023). Fertility, genome stability, and homozygosity in a diverse set of resynthesized rapeseed lines. The Crop Journal, 11(2), 468-477. https://doi.org/10.1016/j.cj.2022.07.022

Katche, E. I., Schierholt, A., Schiessl, S. V., He, F., Lv, Z., Batley, J., ... & Mason, A. S. (2023). Genetic factors inherited from both diploid parents interact to affect genome stability and fertility in resynthesized allotetraploid Brassica napus. G3: Genes, Genomes, Genetics, jkad136. https://doi.org/10.1093/g3journal/jkad136

Ihien Katche, E., & S. Mason, A. (2023). Resynthesized Rapeseed (Brassica napus): Breeding and Genomics. Critical Reviews in Plant Sciences, 42(2), 65-92. https://doi.org/10.1080/07352689.2023.2186021

Yuan, X., Fu, M., Li, G., Qu, C., Liu, H., Li, X., ... & Liu, F. (2023). Whole-Genome Resequencing Reveals the Genetic Diversity and Selection Signatures of the Brassica juncea from the Yunnan-Guizhou Plateau. Agronomy, 13(4), 1053. https://doi.org/10.3390/agronomy13041053

Shrivastav, A., Tripathi, M. K., Tiwari, S., Tripathi, N., Tiwari, P. N., Bimal, S. S., ... & Chauhan, S. (2023). Evaluation of Genetic Diversity in Indian Mustard (Brassica juncea var. rugosa) Employing SSR Molecular Markers. PLANT CELL BIOTECHNOLOGY AND MOLECULAR BIOLOGY, 10-21. https://doi.org/10.56557/PCBMB/2023/v24i3-48245

Gritsenko, D., Daurova, A., Pozharskiy, A., Nizamdinova, G., Khusnitdinova, M., Sapakhova, Z., ... & Zhambakin, K. (2023). Investigation of mutation load and rate in androgenic mutant lines of rapeseed in early generations evaluated by high-density SNP genotyping. Heliyon, 9(3). https://doi.org/10.1016/j.heliyon.2023.e14065

Starosta, E., Szwarc, J., Niemann, J., Szewczyk, K., & Weigt, D. (2023). Brassica napusHaploid and Double Haploid Production and Its Latest Applications. Current Issues in Molecular Biology, 45(5), 4431-4450. https://doi.org/10.3390/cimb45050282

Yan, S., He, J., Tang, M., Ming, B., Li, H., Fan, S., ... & Li, M. (2023). Dissecting the Meiotic Recombination Patterns in a Brassica napus Double Haploid Population Using 60K SNP Array. International Journal of Molecular Sciences, 24(5), 4469. https://doi.org/10.3390/ijms24054469

Xing, M., Peng, Z., Guan, C., & Guan, M. (2023). Comparative study on abortion characteristics of Nsa CMS and Pol CMS and analysis of long non-coding RNAs related to pollen abortion in Brassica napus. Plos one, 18(4), e0284287. https://doi.org/10.1371/journal.pone.0284287

Orantes-Bonilla, M., Wang, H., Lee, H.T. et al. Transgressive and parental dominant gene expression and cytosine methylation during seed development in Brassica napus hybrids. Theor Appl Genet 136, 113 (2023). https://doi.org/10.1007/s00122-023-04345-7

Li, Z., & Wu, W. (2023). Genotype recommendations for high performance and stability based on multiple traits selection across a multi-environment in rapeseed. European Journal of Agronomy, 145, 126787. https://doi.org/10.1016/j.eja.2023.126787

Zhang, C., Gong, R., Zhong, H., Dai, C., Zhang, R., Dong, J., ... & Hu, J. (2023). Integrated multi-locus genome-wide association studies and transcriptome analysis for seed yield and yield-related traits in Brassica napus. Frontiers in Plant Science, 14. https://doi.org/10.3389%2Ffpls.2023.1153000

Yang, B.; Kim, D.; Kim, S.H.; Lee, Y.; Kim, W.J.; Baek, S.H.; Kang, S.; Ahn, J.; Bae, C.; Ryu, J. Association Study of Agronomic and Oil Traits in Rapeseed (Brassica napus L.) Mutant Lines Using Genotyping-by-Sequencing. Preprints.org 2023, 2023041070. https://doi.org/10.20944/preprints202304.1070.v1

Ping, X. U., Hao, L. I., Hai-yuan, L. I., Ge, Z. H. A. O., Sheng-jie, D. A. I., Xiao-yu, C. U. I., ... & Xiao-hua, W. A. N. G. (2023). Genome-wide and candidate gene association studies identifies BnPAP17 conferring utilization of organophosphorus in oilseed rape. Journal of Integrative Agriculture. https://doi.org/10.1016/j.jia.2023.05.002

Zhengbiao Long and others, Genome-wide-association study and transcriptome analysis reveal the genetic basis controlling the formation of leaf wax in Brassica napus, Journal of Experimental Botany, Volume 74, Issue 8, 18 April 2023, Pages 2726–2739, https://doi.org/10.1093/jxb/erad047

Hu, LL., Zheng, LW., Zhu, XL. et al. Genome-wide identification of Brassicaceae histone modification genes and their responses to abiotic stresses in allotetraploid rapeseed. BMC Plant Biol 23, 248 (2023). https://doi.org/10.1186/s12870-023-04256-1

Yan, G., Zhang, M., Guan, W., Zhang, F., Dai, W., Yuan, L., ... & Wu, X. (2023). Genome-Wide Identification and Functional Characterization of Stress Related Glyoxalase Genes in Brassica napus L. International Journal of Molecular Sciences, 24(3), 2130. https://doi.org/10.3390/ijms24032130

Xu, H., Huang, L., Qian, F., Zhang, X., Li, H., Zhai, Y., & Wei, W. (2023). Genome-wide analyses of the Tubby-like proteins in Brassica napus revealed their potential roles in the abiotic stress response. https://doi.org/10.21203/rs.3.rs-2633265/v1

Li, C., Shi, H., Xu, L., Xing, M., Wu, X., Bai, Y., ... & Cui, C. (2023). Combining transcriptomics and metabolomics to identify key response genes for aluminum toxicity in the root system of Brassica napus L. seedlings. https://doi.org/10.21203/rs.3.rs-2891950/v1

Dai, J., Han, P., Walk, T. C., Yang, L., Chen, L., Li, Y., ... & Qin, L. (2023). Genome-Wide Identification and Characterization of Ammonium Transporter (AMT) Genes in Rapeseed (Brassica napus L.). Genes, 14(3), 658. https://doi.org/10.3390/genes14030658

Wang, H., Liu, J., Huang, J., Xiao, Q., Hayward, A., Li, F., ... & Xiao, M. (2023). Mapping and Identifying Candidate Genes Enabling Cadmium Accumulation in Brassica napus Revealed by Combined BSA-Seq and RNA-Seq Analysis. International Journal of Molecular Sciences, 24(12), 10163. https://doi.org/10.3390/ijms241210163

Du, K., Yang, Y., Li, J., Wang, M., Jiang, J., Wu, J., ... & Wang, Y. (2023). Functional Analysis of Bna-miR399c-PHO2 Regulatory Module Involved in Phosphorus Stress in Brassica napus. Life, 13(2), 310. https://doi.org/10.3390/life13020310

Luo, D., Mei, D., Wei, W., & Liu, J. (2023). Identification and Phylogenetic Analysis of the R2R3-MYB Subfamily in Brassica napus. Plants, 12(4), 886. https://doi.org/10.3390/plants12040886

Luo, D., Raza, A., Cheng, Y., Zou, X., & Lv, Y. (2023). Cloning and Functional Characterization of Cold-Inducible MYB-like 17 Transcription Factor in Rapeseed (Brassica napus L.). International Journal of Molecular Sciences, 24(11), 9514. https://doi.org/10.3390/ijms24119514  

Kaur, K., Megha, S., Wang, Z., Kav, N. N., & Rahman, H. (2023). Identification and expression analysis of C2H2-zinc finger protein genes reveals their role in stress tolerance in Brassica napus. Genome, 66(5), 91-107. https://doi.org/10.1139/gen-2022-0100

Yang, S., Chen, J., Ding, Y., Huang, Q., Chen, G., Ulhassan, Z., ... & Wang, J. (2023). Genome-wide investigation and expression profiling of LOR gene family in rapeseed under salinity and ABA stress. Frontiers in Plant Science, 14, 1197781. https://doi.org/10.3389/fpls.2023.1197781

Fang, F., Zhou, W., Liu, Y. et al. Characterization of RING-type ubiquitin SINA E3 ligases and their responsive expression to salt and osmotic stresses in Brassica napus. Plant Cell Rep 42, 859–877 (2023). https://doi.org/10.1007/s00299-023-02996-w

Linghu, B., Song, M., Mu, J., Huang, S., An, R., Chen, N., ... & Zhang, Y. (2023). Comprehensive analysis of U-box E3 ubiquitin ligases gene family revealed BnPUB18 and BnPUB19 negatively regulated drought tolerance in Brassica napus. Industrial Crops and Products, 200, 116875. https://doi.org/10.1016/j.indcrop.2023.116875

Corbridge, E., MacGregor, A., Al-Saharin, R., Garneau, M. G., Smalley, S., Mooney, S., ... & Hellmann, H. (2023). Brassica napus Plants Gain Improved Salt-Stress Tolerance and Increased Storage Oil Biosynthesis by Interfering with CRL3BPM Activities. Plants, 12(5), 1085. https://doi.org/10.3390/plants12051085

Saberi, A. A., Ravari, S. Z., Mehrban, A., Ganjali, H. R., & Oghan, H. A. (2023). Genetic Analysis of Important Traits of Rapeseed Under Normal and Salinity Stress Conditions. https://doi.org/10.21203/rs.3.rs-2846658/v1

Kashyap, A., Kumari, S., Garg, P., Kushwaha, R., Tripathi, S., Sharma, J., ... & Rao, M. (2023). Indexing Resilience to Heat and Drought Stress in the Wild Relatives of Rapeseed-Mustard. Life, 13(3), 738. https://doi.org/10.3390/life13030738

Dong, X., Liu, Z., Wei, J., Zheng, G., Li, H., Wang, Y., ... & Xu, C. (2023). The BrAFP1 promoter drives gene-specific expression in leaves and stems of winter rapeseed (Brassica rapa L.) under cold induction. Plant Science, 331, 111669. https://doi.org/10.1016/j.plantsci.2023.111669

Tang, Y., Zhang, G., Jiang, X., Shen, S., Guan, M., Tang, Y., ... & Qu, C. (2023). Genome-Wide Association Study of Glucosinolate Metabolites (mGWAS) in Brassica napus L. Plants, 12(3), 639. https://doi.org/10.3390/plants12030639

Ryu, J.; Yang, B.; Lee, Y.; Kim, D.; Kim, J.H.; Kim, J.; Kim, W.J.; Kim, S.H.; Kwon, S.; Kim, J.; Kang, S.; Lyu, J.I.; Bae, C.; Ahn, J. Genetic Characterization and Association Study of Anti-nutritional Compounds in Rapeseed (Brassica napus L.) Mutant Lines Using Genotyping‐by‐Sequencing (GBS). Preprints.org 2023, 2023051612. https://doi.org/10.20944/preprints202305.1612.v1

Huang, Q., Lu, L., Xu, Y. et al. Genotypic variation of tocopherol content in a representative genetic population and genome-wide association study on tocopherol in rapeseed (Brassica napus). Mol Breeding 43, 50 (2023). https://doi.org/10.1007/s11032-023-01394-0

Chang, T., Wang, X., Liao, L., Peng, G., Chen, H., Guan, C., & Guan, M. (2023). Prediction of Oleic Acid Content in Brassica napus L. Seeds Based on Hyperspectral Parameters at Seedling Stage: A New Method for Rapidly Screening Germplasm with Different Oleic Acid Content at Early Growth Stage of Rapeseed. https://doi.org/10.21203/rs.3.rs-2448851/v1

Wang, X., Zhao, D., Li, X., Zhou, B., Chang, T., Hong, B., ... & Guan, M. (2023). Integrated Analysis of lncRNA–mRNA Regulatory Networks Related to Lipid Metabolism in High-Oleic-Acid Rapeseed. International Journal of Molecular Sciences, 24(7), 6277. https://doi.org/10.3390/ijms24076277

Li, B., Liu, X., Guo, Y. et al. BnaC01.BIN2, a GSK3-like kinase, modulates plant height and yield potential in Brassica napus. Theor Appl Genet 136, 29 (2023). https://doi.org/10.1007/s00122-023-04325-x

Williams, K., Hepworth, J., Nichols, B. S., Corke, F., Woolfenden, H., Paajanen, P., ... & Wells, R. (2023). Integrated Phenomics and Genomics reveals genetic loci associated with inflorescence growth in Brassica napus. bioRxiv, 2023-03. https://doi.org/10.1101/2023.03.31.535149

Yan, G., Li, S., Ma, M., Quan, C., Tian, X., Tu, J., ... & Dai, C. (2023). The transcription factor BnaWRKY10 regulates cytokinin dehydrogenase BnaCKX2 to control cytokinin distribution and seed size in Brassica napus. Journal of Experimental Botany, erad201. https://doi.org/10.1093/jxb/erad201

Wang, Q.; Xue, N.; Sun, C.; Tao, J.; Mi, C.; Yuan, Y.; Pan, X.; Gui, M.; Long, R.; Ding, R.; Li, S.; Lin, L. Cytokinin Signaling Are Required for Multi-Main Stems Development in Brassica napus L.. Preprints.org 2023, 2023040586. https://doi.org/10.20944/preprints202304.0586.v1

Yang, B., Zhang, L., Xiang, S., Chen, H., Qu, C., Lu, K., & Li, J. (2023). Identification of Trehalose-6-Phosphate Synthase (TPS) Genes Associated with Both Source-/Sink-Related Yield Traits and Drought Response in Rapeseed (Brassica napus L.). Plants, 12(5), 981. https://doi.org/10.3390/plants12050981

Morsi, N. A., Hashem, O. S., El-Hady, M. A. A., Abd-Elkrem, Y. M., El-temsah, M. E., Galal, E. G., ... & Abdelkader, M. A. (2023). Assessing drought tolerance of newly developed tissue-cultured canola genotypes under varying irrigation regimes. Agronomy, 13(3), 836. https://doi.org/10.3390/agronomy13030836

Chen, J., Zhang, S., Li, B. et al. Fine mapping of BnDM1—the gene regulating indeterminate inflorescence in Brassica napus. Theor Appl Genet 136, 151 (2023). https://doi.org/10.1007/s00122-023-04384-0

Zhu, J., Lei, L., Wang, W. et al. QTL mapping for seed density per silique in Brassica napus. Sci Rep13, 772 (2023). https://doi.org/10.1038/s41598-023-28066-5

Ma, X., Wang, J., Gu, Y. et al. Genetic analysis and QTL mapping for silique density in rapeseed (Brassica napus L.). Theor Appl Genet 136, 128 (2023). https://doi.org/10.1007/s00122-023-04375-1

Mahmood, U., Li, X., Qian, M. et al. Comparative transcriptome and co-expression network analysis revealed the genes associated with senescence and polygalacturonase activity involved in pod shattering of rapeseed. Biotechnol Biofuels 16, 20 (2023). https://doi.org/10.1186/s13068-023-02275-6

Tian, Z., Wang, X., Dun, X., Tian, Z., Zhang, X., Li, J., ... & Wang, H. (2023). Integrating biochemical and anatomical characterizations with transcriptome analysis to dissect superior stem strength of ZS11 (Brassica napus). Frontiers in Plant Science, 14, 1144892. https://doi.org/10.3389/fpls.2023.1144892

Guan, M., Shi, X., Chen, S., Wan, Y., Tang, Y., Zhao, T., ... & Qu, C. (2023). Comparative transcriptome analysis identifies candidate genes related to seed coat color

in rapeseed. Frontiers in Plant Science, 14. doi.org/10.3389%2Ffpls.2023.1154208

Liu, F., Chen, H., Yang, L., You, L., Ju, J., Yang, S., ... & Liu, Z. (2023). QTL Mapping and Transcriptome Analysis Reveal Candidate Genes Regulating Seed Color in Brassica napus. International Journal of Molecular Sciences, 24(11), 9262. https://doi.org/10.3390/ijms24119262

Łopatyńska, A., Wolko, J., Bocianowski, J., Cyplik, A., & Gacek, K. (2023). Statistical Multivariate Methods for the Selection of High-Yielding Rapeseed Lines with Varied Seed Coat Color. Agriculture, 13(5), 992. https://doi.org/10.3390/agriculture13050992

Li, S., Li, X., Wang, X., Chang, T., Peng, Z., Guan, C., & Guan, M. (2023). Flavonoid Synthesis-Related Genes Determine the Color of Flower Petals in Brassica napus L. International Journal of Molecular Sciences, 24(7), 6472. https://doi.org/10.3390/ijms24076472

Li, R., Zeng, Q., Zhang, X., Jing, J., Ge, X., Zhao, L., ... & Shen, J. (2023). Xanthophyll esterases in association with fibrillins control the stable storage of carotenoids in yellow flowers of rapeseed (Brassica juncea). New Phytologist. https://doi.org/10.1111/nph.18970

Zan, L., Li, K., Jia, Y. et al. Screening and evaluation of three restorer lines used to create synthetic hybrids of extra-early-maturingBrassica napus. Euphytica 219, 45 (2023). https://doi.org/10.1007/s10681-023-03175-4

Tonu, N. N., Wen, R., Song, T., Guo, X., Murphy, L. A., Gossen, B. D., ... & Peng, G. (2023). Canola with Stacked Genes Shows Moderate Resistance and Resilience against a Field Population of Plasmodiophora brassicae (Clubroot) Pathotype X. Plants, 12(4), 726. https://doi.org/10.3390/plants12040726

Yu, K., Zhang, Y., Fei, X., Ma, L., Sarwar, R., Tan, X., & Wang, Z. (2023). BnaWRKY75 positively regulates the resistance against Sclerotinia sclerotiorumin ornamental Brassica napus. Horticultural Plant Journal. https://doi.org/10.1016/j.hpj.2023.05.001

Muhammad, N., Khan, S. A., Ahmad, S., Ahmed, S., & Khan, Z. (2023). Gene mapping of the mustard aphid(Lipaphis erysimi (Kalt.) Hemiptera: Aphididae) linkages of resistance gene in canola genotypes associated with RAPD markers. Journal of the Saudi Society of Agricultural Sciences, 22(5), 309-317. https://doi.org/10.1016/j.jssas.2023.02.002

Xu, Huaxiang and Guo, Xi and Bai, Huiyang and Shi, Huiming and Yu, Jie and Lu, Junxing and Zhu, Bo and Tao, Zhang, Plant Defensin Gene Pfpdf2 from Perilla Frutescens Confers High-Level Resistance to Alternaria Brassicae and Botrytis Cinerea In Brassica Napus. Available at SSRN https://ssrn.com/abstract=4344022 or http://dx.doi.org/10.2139/ssrn.4344022

Ali, E., & Zhang, K. (2023). CRISPR-mediated technology for seed oil improvement in rapeseed: Challenges and future perspectives. Frontiers in Plant Science, 14. https://doi.org/10.3389%2Ffpls.2023.1086847

Moradyar, M., Zamani, M., Motallebi, M., & Jourabchi, E. (2023). Analysis of the Effect of Chimeric Chitinase Expressed by Synthetic Promoter in T2 Generation of Transgenic Canola. Journal of Genetic Resources, 9(1), 48-58. https://doi.org/10.22080/jgr.2023.24506.1336

Xue, Y. F., Fu, C., Chai, C. Y., Liao, F. F., Chen, B. J., Wei, S. Z., ... & Chai, Y. R. (2023). Engineering the Staple Oil Crop Brassica napus Enriched with α-Linolenic Acid Using the Perilla FAD2–FAD3 Fusion Gene. Journal of Agricultural and Food Chemistry, 71(19), 7324-7333. https://doi.org/10.1021/acs.jafc.2c09026

Calabuig-Serna, A., Mir, R., Porcel, R., & Seguí-Simarro, J. M. (2023). The Highly Embryogenic Brassica napus DH4079 Line Is Recalcitrant to Agrobacterium-Mediated Genetic Transformation. Plants, 12(10), 2008. https://doi.org/10.3390/plants12102008

Wu, Q., Wu, J., Hu, P. et al. Quantification of the three-dimensional root system architecture using an automated rotating imaging system. Plant Methods 19, 11 (2023). https://doi.org/10.1186/s13007-023-00988-1

Zhang, Y., An, R., Song, M., Xie, C., Wei, S., Wang, D., ... & Mu, J. (2023). A Set of Molecular Markers to Accelerate Breeding and Determine Seed Purity of CMS Three-Line Hybrids in Brassica napus. Plants, 12(7), 1514. https://doi.org/10.3390/plants12071514

Li, X., Sandgrind, S., Moss, O., Guan, R., Ivarson, E., Wang, E. S., ... & Zhu, L. H. (2023). Corrigendum: Efficient protoplast regeneration protocol and CRISPR/Cas9-mediated editing of glucosinolate transporter (GTR) genes in rapeseed (Brassica napus L.). Frontiers in Plant Science, 14. https://doi.org/10.3389%2Ffpls.2023.1183684

Ahmad, N., Fatima, S., Mehmood, M. A., Zaman, Q. U., Atif, R. M., Zhou, W., ... & Gill, R. A. (2023). Targeted genome editing in polyploids: lessons from Brassica. Frontiers in Plant Science, 14, 1152468. https://doi.org/10.3389/fpls.2023.1152468

Szwarc, J., Niemann, J., Bocianowski, J., Kaczmarek, J., Doğu, M. Z., & Nowicka, A. (2023). Improving the Selection Efficiency of Breeding Material within Interspecific Brassicaceae Hybrids with Genomic Prediction and Phenotyping. Agriculture, 13(5), 962. https://doi.org/10.3390/agriculture13050962

De Meyer S, Cruz DF, De Swaef T, Lootens P, De Block J, Bird K, et al. (2023) Predicting yield of individual field-grown rapeseed plants from rosette-stage leaf gene expression. PLoS Comput Biol 19(5): e1011161. https://doi.org/10.1371/journal.pcbi.1011161

Norouzi, M. A., Ahangar, L., Payghamzadeh, K., Sabouri, H., & Sajadi, S. J. (2023). Investigation Of Genetic Diversity Of Different Rapeseed (brassica napus l.) Genotypes And Yield Prediction Using Machine Learning Models. https://doi.org/10.21203/rs.3.rs-2932625/v1



Pierre, E., Marcelo, P., Croutte, A., Dauvé, M., Bouton, S., Rippa, S., & Pageau, K. (2023). Impact of Rhamnolipids (RLs), Natural Defense Elicitors, on Shoot and Root Proteomes of Brassica napus by a Tandem Mass Tags (TMTs) Labeling Approach. International Journal of Molecular Sciences, 24(3), 2390, https://doi.org/10.3390/ijms24032390

Umer, M., Qadeer, A., Razaq, Z., Anwar, N., & Kiptoo, J. J. (2023). Mycovirus: Biocontrol agent against S sclerotiorum of Rapeseed. Phytopathogenomics and Disease Control, 1, 97-108.  REFERENCE

Cao, S., Jiang, B., Yang, G. et al. Isolation and evaluation of Bacillus subtilis RSS-1 as a potential biocontrol agent against Sclerotinia sclerotiorum on oilseed rape. Eur J Plant Pathol 166, 9–25 (2023). https://doi.org/10.1007/s10658-023-02642-x

Trivedi, S., Jambhulkar, P. P., Kumar, S., & Niranjan, P. (2023). A modified and effective stem inoculation technique for artificial screening against Sclerotinia sclerotiorum in mustard. Journal of Phytopathology. https://doi.org/10.1111/jph.13179

Wei, J., Yao, C., Zhu, Z., Gao, Z., Yang, G., & Pan, Y. (2023). Nitrate reductase is required for sclerotial development and virulence of Sclerotinia sclerotiorum. Frontiers in Plant Science, 14, 1096831. https://doi.org/10.3389/fpls.2023.1096831

Michael, P. J., Lamichhane, A. R., & Bennett, S. J. (2023). Growing Season Conditions and Isolate Are Important Determinants of Brassica Napus Susceptibility to Aggressive Sclerotinia Sclerotiorum Isolates. https://doi.org/10.3390/agronomy13061606

Michael, P. J., Rijal Lamichhane, A., & Bennett, S. J. (2023). Temperature and Isolate Are Important Determinants of Brassica napus Susceptibility to Aggressive Sclerotinia sclerotiorum Isolates. Agronomy, 13(6), 1606. https://doi.org/10.3390/agronomy13061606

Walker, P. (2023). Investigation of the Brassica napus-Sclerotinia sclerotiorum pathosystem and development of RNA interference-based technologies to control pathogenicity. http://hdl.handle.net/1993/37179

Wang, Yongchun and Yu, Han and Xu, Yuping and Wu, Mingde and Zhang, Jing and Tsuda, Kenichi and Liu, Shengyi and Jiang, Daohong and Chen, Weidong and Wei, Yangdou and Li, Guo-Qing and Yang, Long, Expression of a Mycoparasite Protease in Plant Petals Suppresses the Petal-Mediated Infection by Necrotrophic Pathogens. Available at SSRN https://ssrn.com/abstract=4423202 or http://dx.doi.org/10.2139/ssrn.4423202

Gautier, A., Laval, V., Faure, S., Rouxel, T., & Balesdent, M. H. (2023). Polymorphism of avirulence genes and adaptation to Brassica resistance genes is gene-dependent in the phytopathogenic fungus Leptosphaeria maculans. Phytopathology, (ja). https://doi.org/10.1094/PHYTO-12-22-0466-R

Talbi, N., Fokkens, L., Audran, C., Petit-Houdenot, Y., Pouzet, C., Blaise, F. et al. (2023) The neighbouring genes AvrLm10A and AvrLm10B are part of a large multigene family of cooperating effector genes conserved in Dothideomycetes and Sordariomycetes. Molecular Plant Pathology, 24, 914– 931. Available from: https://doi.org/10.1111/mpp.13338

Fu, H., Yang, Y., Sarkes, A., Harding, M. W., Feindel, D., & Feng, J. (2023). Development of a duplexqPCR system for detection and quantification of the two canola blackleg pathogens Leptosphaeria biglobosa and L. maculans. Plant Disease, (ja). https://doi.org/10.1094/PDIS-10-22-2308-RE

Bagi, B., Palkovics, L. & Petróczy, M. Phylogenetic analysis of Plenodomus lingamand Plenodomus biglobosus isolates in Hungary. J Plant Dis Prot (2023). https://doi.org/10.1007/s41348-023-00720-0

Auer, S., Ludwig-Müller, J. Biocontrol of clubroot disease: how successful are endophytic fungi and bacteria?. Eur J Plant Pathol (2023). https://doi.org/10.1007/s10658-023-02701-3

Sarkar, A., Kisiala, A., Adhikary, D., Basu, U., Emery, R. N., Rahman, H., & Kav, N. N. (2023). Silicon ameliorates clubroot responses in canola (Brassica napus): A “multi‐omics”‐based investigation into possible mechanisms. Physiologia Plantarum, 175(2), e13900. https://doi.org/10.1111/ppl.13900

Hollman, K. B., Manolii, V. P., Aigu, Y., Harding, M. W., Hwang, S. F., & Strelkov, S. E. (2023). Characterization of Plasmodiophora brassicae pathotypes from western Canada in 2019–2020. Canadian Journal of Plant Pathology, 1-10. https://doi.org/10.1080/07060661.2023.2212639

Salih, R., Brochu, A. S., Labbe, C., Strelkov Sr, S., Franke, C., Bélanger, R., & Pérez-López Sr, E. (2023). A Hydroponic-Based Bioassay to Facilitate Plasmodiophora brassicae Phenotyping. bioRxiv, 2023-05. https://doi.org/10.1101/2023.05.13.540618

Upadhyay, P., Tewari, A. K., & Punetha, H. (2023). Biochemical estimation of polyphenol and peroxidases in resistant sources against white rust disease of rapeseed mustard incited by Albugo candida. https://www.thepharmajournal.com/archives/2023/vol12issue3/PartBB/12-3-340-591.pdf

Romero, B., Dumonceaux, T., Olivier, C., Wist, T., & Prager, S. (2023). Development of Aster Yellows on crop and non-crop species from the Canadian Prairies. PhytoFrontiers, (ja). https://doi.org/10.1094/PHYTOFR-01-23-0008-R

Sulg, S., Kovács, G., Willow, J., Kaasik, R., Smagghe, G., Lövei, G. L., & Veromann, E. (2023). Spatiotemporal distancing of crops reduces pest pressure while maintaining conservation biocontrol in oilseed rape. Pest Management Science. https://doi.org/10.1002/ps.7391

Boetzl, F. A., Bommarco, R., Aguilera, G., & Lundin, O. (2023). Spatiotemporal isolation of oilseed rape fields reduces insect pest pressure and crop damage. Journal of Applied Ecology. https://doi.org/10.1111/1365-2664.14424

Shortall, C. R., Cook, S. M., Mauchline, A. L., & Bell, J. R. (2023). Long‐term trends in migrating Brassicogethes aeneus in the UK. Pest Management Science. https://doi.org/10.1002/ps.7501

Bick, E., Sigsgaard, L., Torrance, M. T., Helmreich, S., Still, L., Beck, B., ... & Cook, S. M. (2023). Dynamics of pollen beetle (Brassicogethes aeneus) immigration and colonisation of oilseed rape (Brassica napus) in Europe. Pest Management Science. https://doi.org/10.1002/ps.7538

Hrudová, E., Seidenglanz, M., Tóth, P., Poslušná, J., Kolařík, P., & Havel, J. (2023). Pollen Beetles in Oilseed Rape Fields: Spectrum and Distribution in Czech Republic during 2011–2013. Agriculture, 13(6), 1243. https://doi.org/10.3390/agriculture13061243

Vankosky, M. A., Hladun, S., Williams, J., Soroka, J. J., Andreassen, L., Meers, S., ... & Mori, B. A. (2023). Pheromone trap monitoring reveals the continued absence of swede midge in the Northern Great Plains. The Canadian Entomologist, 155, e7. https://doi.org/10.4039/tce.2022.38

D’Ottavio, M., Boquel, S., Labrie, G., & Lucas, E. (2023). Landscape Effects on the Cabbage Seedpod Weevil, Ceutorhynchus obstrictus (Coleoptera: Curculionidae), and on Its Parasitoid, Trichomalus perfectus (Hymenoptera: Pteromalidae), in Canola. Insects, 14(4), 327. https://doi.org/10.3390/insects14040327

Bouzan, R. S., Júnior, A. L. M., da Silva Pereira, P. R. V., Brescovit, A. D., & Iniesta, L. F. M. (2023). First records of millipedes (Myriapoda, Diplopoda) associated to cultivation of Canola Brassica spp. (Brassicaceae) in Brazil. Scientific Electronic Archives, 16(2). https://doi.org/10.36560/16220231665

Dehghan, A., Rounagh-Ardakani, H., Mohammadzadeh, A., Mohammadzadeh, M., Mohammadzadeh, M., & Borzoui, E. (2023). Induction of resistance, enzyme activity, and phytochemicals in canola plants treated with abscisic acid elevated based on nutrient availability: a case study on Brevicoryne brassicae L. (Hemiptera: Aphididae). Journal of Insect Science, 23(3), 17. https://doi.org/10.1093/jisesa/iead037

Tiwari, S., Gupta, S. K., Upadhyay, R., Singh, H., Yadav, O. P., & Pandey, M. K. (2023). Screening of Brassica genotypes against mustard aphid under northern Indian Shivalik hill conditions. Environment Conservation Journal. https://doi.org/10.36953/ECJ.15402483

Nisar, M. S., Rashid, A., Samiullah, K., Haidar, M. R., & Malik, S. (2023). Ecofriendly Approaches for Controlling Mustard Aphid (Lipaphis erysimi Kalt.) Infestation. Plant Protection, 7(1), 1-7. https://esciencepress.net/journals/index.php/PP/article/view/4455

Kaur, H., Khadda, B. S., & Singh, P. (2023). Efficacy of Some Botanical Pesticides Against Mustard AphidLipaphis erysimi (Kalt.) In Brassica napus. Indian Journal of Entomology. https://indianentomology.org/index.php/ije/article/view/1047

Elliott, N. C., Giles, K. L., Baum, K. A., & Elzay, S. D. (2023). Quantitative Study of Aphid Natural Enemies in Central Oklahoma Canola Fields. Southwestern Entomologist, 47(4), 821-828. https://doi.org/10.3958/059.047.0403

Almdal, Crystal Dawn and Costamagna, Alejandro C., Annual Crops Contribute More Predators than Perennial Habitats During an Aphid Outbreak. Available at SSRN https://ssrn.com/abstract=4421516 or http://dx.doi.org/10.2139/ssrn.4421516

Mai, M., Mesbah, I. I., Hendawy, A. S., Hamed, S. A., El-Zahraa, F., & Hegazy, H. Survey and Population Fluctuation of Certain Insect Pests and their Predators in Canola Fields at Kafr-El Sheikh Governorate. https://jsaes.journals.ekb.eg/article_298172_78d2134ce40ca68d44cae9d604a3c03c.pdf

Congdon, B. S., Baulch, J. R., Filardo, F., & Nancarrow, N. (2023). Turnip yellows virus variants differ in host range, transmissibility, and virulence. https://doi.org/10.21203/rs.3.rs-2968728/v1

Bootter, M. B., Li, J., Zhou, W., Edwards, D., & Batley, J. (2023). Diversity of Phytosterols in Leaves of Wild Brassicaceae Species as Compared to Brassica napus Cultivars: Potential Traits for Insect Resistance and Abiotic Stress Tolerance. Plants, 12(9), 1866. https://doi.org/10.3390/plants12091866

Mutua, E. K., Gaoqiong, L., & Mwangi, M. Insecticidal properties of neem seed extracts: A review. https://repository.ruforum.org/sites/default/files/Mutua%20E.pdf

ÖZTÜRK, L. (2023). A Field Study on Determination of Nematode Diversity in Canola Fields in Tekirdağ, Turkey. Türk Doğa ve Fen Dergisi, 12(1), 91-98. https://doi.org/10.46810/tdfd.1224967

Sandoval-Ruiz, R., & Grabau, Z. J. (2023). HOST SUITABILITY OF CARINATA (Brassica Carinata) FOR Rotylenchulus reniformis Nematropica, 53. https://journals.flvc.org/nematropica/article/view/133411

Abati, R., Libardoni, G., Osowski, G. et al. Residual effect of imidacloprid and beta-cyfluthrin on Africanized Apis mellifera L. (Hymenoptera: Apidae) workers. Apidologie 54, 26 (2023). https://doi.org/10.1007/s13592-023-01005-z

Jaques, S. A., Jofré-Pérez, C., Murúa, M. M., Vieli, L., & Fontúrbel, F. E. (2023). Crop-Specific Effects on Pan-Trap Sampling of Potential Pollinators as Influenced by Trap Color and Location. Agronomy, 13(2), 552. https://doi.org/10.3390/agronomy13020552

Hada, Z., Jenfaoui, H., Khammassi, M., Matmati, A., & Souissi, T. Allelopathic Effect of Barley (Hordeum vulgare) and Rapeseed (Brassica napus) Crops on Early Growth of Acetolactate Synthase (ALS)-ResistantGlebionis Coronaria. https://doi.org/10.52543/tjpp.17.2.2

Hu, M., Zhang, H., Kong, L., Ma, J., Wang, T., Lu, X., ... & Chu, P. (2023). Comparative proteomic and physiological analyses reveal tribenuron‐methyl phytotoxicity and nontarget‐site resistance mechanisms in Brassica napus. Plant, Cell & Environment. https://doi.org/10.1111/pce.14598



KA Seetseng, JH Barnard, LD van Rensburg, & CC du Preez. (2023). Canola (Brassica napus L.) water use indicators as affected by sustained deficit irrigation and plant density in central Free State, South Africa. Water SA, 49(2 April). https://doi.org/10.17159/wsa/2023.v49.i2.3965

Ullah, S., Nafees, M., & Ahmed, I. (2023). Resistance induction in Brassica napus L. against water deficit stress through application of biochar and plant growth promoting rhizobacteria. Journal of the Saudi Society of Agricultural Sciences. https://doi.org/10.1016/j.jssas.2023.04.001

Xiang, Jie and Vickers, Laura and Hare, Martin and Kettlewell, Peter, Increasing the Concentration of Film Antitranspirant Enhances Yield Benefits on Rapeseed (Brassica Napus L.) Under Terminal Drought. Available at SSRN https://ssrn.com/abstract=4327524 or http://dx.doi.org/10.2139/ssrn.4327524

Xiang, J., Vickers, L. H., Hare, M. C., & Kettlewell, P. S. (2023). Increasing the concentration of film antitranspirant increases yields of rapeseed under terminal drought by improving plant water status. Agricultural Water Management, 284, 108350. https://doi.org/10.1016/j.agwat.2023.108350

Tian, X., Zhao, Y., Chen, Z. et al. Effects of Nitrogen Fertilization on Yield and Nitrogen Utilization of Film Side Planting Rapeseed (Brassica napus L.) Under Different Soil Fertility Conditions. J Soil Sci Plant Nutr 23, 368–379 (2023). https://doi.org/10.1007/s42729-022-01030-4

Li, J., Zhou, Y., Gu, H., Lu, Z., Cong, R., Li, X., ... & Lu, J. (2023). Synergistic effect of nitrogen and potassium on seed yield and nitrogen use efficiency in winter oilseed rape (Brassica napus L.). European Journal of Agronomy, 148, 126875. https://doi.org/10.1016/j.eja.2023.126875

Wang, R., Zheng, W., Wu, Y., Liu, D., & Peng, W. Effects of a range of phosphorus levels on yield, phosphorus efficiency and canopy sunlight interception in direct‐seeded winter rapeseed. Agronomy Journal. https://doi.org/10.1002/agj2.21394

Safdar, M.E., M. Asif, A. Ali, A. Aziz, N. Akhtar, M.S. Gulrez and W. Raza. 2023. Integrated use of boron and zinc for enhancing growth, yield and quality of canola. Sarhad Journal of Agriculture, 39(1): 287-297. https://dx.doi.org/10.17582/journal.sja/2023/39.1.287..297

Nasrollahzadeh, S., Mamnabi, S., Ghassemi-Golezani, K., Raei, Y., & Weisany, W. (2023). PGPR and vermicompost with reduced chemical fertilizer enhances biodiesel production, nutrient uptake and improve oil composition of rapeseed grown under water deficit stress. South African Journal of Botany, 159, 17-25. https://doi.org/10.1016/j.sajb.2023.06.001

Al Naemi, M., Garnier, P., Jullien, A., and Richard-Molard, C.: Effects of Winter Rapeseed - Faba-bean intercrop and litter mulch on soil Nitrogen  , EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-14362, https://doi.org/10.5194/egusphere-egu23-14362 , 2023

Chen, S., Yang, D., Wei, Y., He, L., Li, Z., & Yang, S. (2023). Changes in Soil Phosphorus Availability and Microbial Community Structures in Rhizospheres of Oilseed Rapes Induced by Intercropping with White Lupins. Microorganisms, 11(2), 326. https://doi.org/10.3390/microorganisms11020326

Zhang, Z., Chang, L., Liu, X., Wang, J., Ge, X., Cheng, J., ... & Chen, T. (2023). Rapeseed Domestication Affects the Diversity of Rhizosphere Microbiota. Microorganisms, 11(3), 724. https://doi.org/10.3390/microorganisms11030724

Li, Y., Vail, S. L., Arcand, M. M., & Helgason, B. L. (2023). Contrasting nitrogen fertilization and Brassica napus (canola) variety development impact recruitment of the root-associated microbiome. Phytobiomes Journal, 7(1), 125-137. https://doi.org/10.1094/PBIOMES-07-22-0045-R

Farhat, F., Tariq, A., Waseem, M. et al. Plant Growth Promoting Rhizobacteria (PGPR) Induced Improvements in the Growth, Photosynthesis, Antioxidants, and Nutrient Uptake of Rapeseed (Brassica napus L.). Gesunde Pflanzen (2023). https://doi.org/10.1007/s10343-023-00845-0 or REFERENCE

Świątczak, J., Kalwasińska, A., Szabó, A., & Swiontek Brzezinska, M. (2023). Pseudomonas sivasensis 2RO45 inoculation alters the taxonomic structure and functioning of the canola rhizospheremicrobial community. Frontiers in Microbiology, 14, 1168907. https://doi.org/10.3389/fmicb.2023.1168907

Town, J.R., Dumonceaux, T., Tidemann, B. et al. Crop rotation significantly influences the composition of soil, rhizosphere, and root microbiota in canola (Brassica napus L.). Environmental Microbiome 18, 40 (2023). https://doi.org/10.1186/s40793-023-00495-9

Xie, Z., Kong, J., Tang, M., Luo, Z., Li, D., Liu, R., ... & Zhang, C. (2023). Modelling Winter Rapeseed (Brassica napus L.) Growth and Yield under Different Sowing Dates and Densities Using AquaCrop Model. Agronomy, 13(2), 367. https://doi.org/10.3390/agronomy13020367

Guirrou, I., El Harrak, A., El Antari, A., Hssaini, L., Hanine, H., El Fechtali, M., & Nabloussi, A. (2023). Bioactive Compounds Assessment in Six Moroccan Rapeseed (Brassica napus L.) Varieties Grown in Two Contrasting Environments. Agronomy, 13(2), 460.  https://doi.org/10.3390/agronomy13020460

Al-Awad, O. A. S., Prendergast, K. S., Robson, A., & Rengel, Z. (2023). Screening Canola Genotypes for Resistance to Ammonium Toxicity. Agronomy, 13(4), 1150. https://doi.org/10.3390/agronomy13041150

Rybacki, P., Niemann, J., Bahcevandziev, K., & Durczak, K. (2023). Convolutional Neural Network Model for Variety Classification and Seed Quality Assessment of Winter Rapeseed. Sensors, 23(5), 2486. https://doi.org/10.3390/s23052486

Li, Q., Luo, T., Cheng, T., Yang, S., She, H., Li, J., ... & Zhou, G. (2023). Evaluation and Screening of Rapeseed Varieties (Brassica napus L.) Suitable for Mechanized Harvesting with High Yield and Quality. Agronomy, 13(3), 795. https://doi.org/10.3390/agronomy13030795

Morsi, N. A., Hashem, O. S., El-Hady, M. A. A., Abd-Elkrem, Y. M., El-temsah, M. E., Galal, E. G., ... & Abdelkader, M. A. (2023). Assessing drought tolerance of newly developed tissue-cultured canola genotypes under varying irrigation regimes. Agronomy, 13(3), 836. https://doi.org/10.3390/agronomy13030836

Kazemi Oskuei, B., Bandehagh, A., Farajzadeh, D. et al. Morphological, biochemical, and physiological responses of canola cultivars to drought stress. Int. J. Environ. Sci. Technol. (2023). https://doi.org/10.1007/s13762-023-04928-3

Nawaz, H., Khan, A., Ali, A., & Ameer, A. (2023). Screening of canola (Brassica napus L.) cultivars for nickel stress tolerance. International Journal of Applied and Experimental Biology, 2(2), 125-131. https://doi.org/10.56612/ijaeb.v1i1.36

Shafey, S., El-Maaty, S.A., El Habbasha, S.F. et al. Evaluation of the growth, yield traits and the genetic diversity of some Brassica napusgenotypes under Egyptian conditions. Beni-Suef Univ J Basic Appl Sci 12, 48 (2023). https://doi.org/10.1186/s43088-023-00388-3

Wang, C., Li, Z., & Wu, W. (2023). Understanding fatty acid composition and lipid profile of rapeseed oil in response to nitrogen management strategies. Food Research International, 165, 112565. https://doi.org/10.1016/j.foodres.2023.112565

Sabbahi, R., Azzaoui, K., Rhazi, L., Ayerdi-Gotor, A., Aussenac, T., Depeint, F., ... & Hammouti, B. (2023). Factors Affecting the Quality of Canola Grains and Their Implications for Grain-Based Foods. Foods, 12(11), 2219. https://doi.org/10.3390/foods12112219

Shen, S., Li, Y., Chen, M., Huang, J., Liu, F., Xie, S., ... & Pan, Y. (2023). Reduced cadmium toxicity in rapeseed via alteration of root properties and accelerated plant growth by a nitrogen-fixing bacterium. Journal of Hazardous Materials, 449, 131040. https://doi.org/10.1016/j.jhazmat.2023.131040

Razzaghi, F., Shabani, A., Sepaskhah, A.R. (2023). Do Cultivating Methods Improve Crop Yield Under Saline Conditions in Semi-Arid Areas. In: Choukr-Allah, R., Ragab, R. (eds) Biosaline Agriculture as a Climate Change Adaptation for Food Security. Springer, Cham. https://doi.org/10.1007/978-3-031-24279-3_11

Tian, X., Li, Z., Liu, Y. et al. Role of tillage measures in mitigating waterlogging damage in rapeseed. BMC Plant Biol 23, 231 (2023). https://doi.org/10.1186/s12870-023-04250-7

Chao, W. S., Anderson, J. V., Li, X., Gesch, R. W., Berti, M. T., & Horvath, D. P. (2023). Overwintering Camelina and Canola/Rapeseed Show Promise for Improving Integrated Weed Management Approaches in the Upper Midwestern US. Plants, 12(6), 1329. https://doi.org/10.3390/plants12061329

Siahbidi, A. Z., & Asgari, A. (2023). Determination of the optimal plant population and rapeseed genotype (Brassica napus L.) in western Iran. International journal of agriculture and natural resources, 50(1), 1-11. https://www.scielo.cl/scielo.php?pid=S2452-57312023000100001&script=sci_arttext

Yuldasheva, Z. (2023, April). Growth phases of autumn rapeseed effect of seedling thickness. In E3S Web of Conferences (Vol. 389, p. 03083). https://doi.org/10.1051/e3sconf/202338903083

Conyers, M. K., Moroni, J. S., Poile, G. J., Oates, A. A., Lowrie, R., Swan, A. D., ... & Kirkegaard, J. A. (2023). Response of canola and cereals to amendment of subsurface soil acidity and a hardpan. Crop and Pasture Science. https://www.publish.csiro.au/cp/CP23009

Shaaban, A., El-Mageed, T.A.A., El-Momen, W.R.A. et al. The Integrated Application of Phosphorous and Zinc Affects the Physiological Status, Yield and Quality of Canola Grown in Phosphorus-suffered Deficiency Saline Soil. Gesunde Pflanzen (2023). https://doi.org/10.1007/s10343-023-00843-2

Madsen, I. J., & Neely, C. (2023). Dual-purpose canola management in the Pacific Northwest. https://doi.org/10.7273/000004647

KUMHÁLA, F., KUMHÁLOVÁ, J., BEČKA, D., & MADĚRA, M. USE OF AERIAL APPLICATION OF POD SEALANTS IN CANOLA CROPS. https://2022.tae-conference.cz/proceeding/TAE2022-37-Frantisek-KUMHALA.pdf

Huang, J., Cao, X., Kuai, J., Cheng, H., Zuo, Q., Du, H., ... & Deng, N. (2023). Evaluation of production capacity for rice-rapeseed cropping system in China. Field Crops Research, 293, 108842. https://doi.org/10.1016/j.fcr.2023.108842

Xu, P., Jiang, M., Khan, I., Shaaban, M., Zhao, J., Yang, T., & Hu, R. (2023). The effect of upland crop planting on field N2O emission from rice-growing seasons: A case study comparing rice-wheat and rice-rapeseed rotations. Agriculture, Ecosystems & Environment, 347, 108365. https://doi.org/10.1016/j.agee.2023.108365

Tenuta, M., Gao, X., Tiessen, K. H., Baron, K., & Sparling, B. Placement and nitrogen source effects on N2O emissions for canola production in Manitoba. Agronomy Journal. https://doi.org/10.1002/agj2.21408

Robinson, S. V., Cartar, R. V., Pernal, S. F., Waytes, R., & Hoover, S. E. (2023). Bee visitation, pollination service, and crop yield in commodity and hybrid seed canola. Agriculture, Ecosystems & Environment, 347, 108396. https://doi.org/10.1016/j.agee.2023.108396

Tomczyk, M., Zaguła, G., Kaczmarski, M., Puchalski, C., & Dżugan, M. (2023). The Negligible Effect of Toxic Metal Accumulation in the Flowers of Melliferous Plants on the Mineral Composition of Monofloral Honeys. Agriculture, 13(2), 273. https://doi.org/10.3390/agriculture13020273

Hološková, A., Kadlec, T., & Reif, J. (2023). Vegetation Structure and Invertebrate Food Availability for Birds in Intensively Used Arable Fields: Evaluation of Three Widespread Crops. Diversity, 15(4), 524. https://doi.org/10.3390/d15040524



Shen, Shili and Li, Yinghan and Chen, Mingbiao and Huang, Jun and Liu, Feng and Pan, Ying, Reduction of Cadmium Toxicity in Rapeseed Via Alteration of Cell Wall Properties in Roots and Acceleration of its Growth by a Nitrogen-Fixing Bacterium. Available at SSRN https://ssrn.com/abstract=4326381 or http://dx.doi.org/10.2139/ssrn.4326381

Liao, Y., Tang, Y., Wang, S., Su, H., Chen, J., Zhang, D., ... & Liu, L. (2023). Abscisic acid modulates differential physiological and biochemical responses to cadmium stressin Brassica napus. Environmental Pollutants and Bioavailability, 35(1), 2168216. https://doi.org/10.1080/26395940.2023.2168216

Doğuş, H., Yıldız, M., Terzi, H. et al. Evaluation of Selenium Influence on the Alleviation of Chromium Stress in Rapeseed by Physiological and Proteomic Approaches. Plant Mol Biol Rep (2023). https://doi.org/10.1007/s11105-023-01384-8

Singh, G., Kumari, B., Kriti, Sinam, G., Kulsoom, M., Niranjan, A., ... & Mallick, S. (2023). Changes in fatty acids in Brassica juncea L. oil grown under two simulated conditions of fluoride contamination. International Journal of Phytoremediation, 1-8. https://doi.org/10.1080/15226514.2023.2197508

Wang, J., Tan, B., He, Y., Liu, C., Li, N., Tan, X., & Lu, H. (2023). Potential Biochemical Markers Affecting Aging and “the Compensatory Effects” of Canola (Brassica napus L.) Seeds Stored in Deep Underground. Agriculture, 13(2), 320. https://doi.org/10.3390/agriculture13020320

Abrahimi, F., Taghvaei, M., & Mastinu, A. (2023). Nano-Organic Coatings Improve Early Vigor of Brassica napus L.Seeds in Water Deficit. Agronomy, 13(2), 390. https://doi.org/10.3390/agronomy13020390

Rezayian, M., Niknam, V. & Arabloo, M. Iron nanoparticle regulate succinate dehydrogenase activity in canola plants under drought stress. Sci Rep 13, 9628 (2023). https://doi.org/10.1038/s41598-023-36105-4

Belt, D., Grygier, A., Siger, A., Kmiecik, D., Spasibionek, S., & Rudzińska, M. (2023). Changes in Oil Quality and Peroxidase Activity during Germination of Rape Seeds and Mustard Seeds. Applied Sciences, 13(4), 2196. https://doi.org/10.3390/app13042196

Hasanuzzaman, M., Raihan, M. R. H., Alharby, H. F., Al-Zahrani, H. S., Alsamadany, H., Alghamdi, K. M., ... & Nahar, K. (2023). Foliar application of ascorbic acid and tocopherol in conferring salt tolerance in rapeseed by enhancing K+/Na+ homeostasis, osmoregulation, antioxidant defense, and glyoxalase system. Agronomy, 13(2), 361. https://doi.org/10.3390/agronomy13020361

Molnár, K., Biró-Janka, B., Domokos, E., Nyárádi, I. I., Fodorpataki, L., Stoie, A., & Duda, M. M. (2023). Effects of Seed Priming and Foliar Treatment with Ascorbate, Cysteine, and Triacontanol on Canola (Brassica napus L.) under Field Conditions. Horticulturae, 9(2), 207.  https://doi.org/10.3390/horticulturae9020207

Hong, B., Zhou, B., Peng, Z., Yao, M., Wu, J., Wu, X., ... & Guan, M. (2023). Tissue-Specific Transcriptome and Metabolome Analysis Reveals the Response Mechanism of Brassica napus to Waterlogging Stress. International Journal of Molecular Sciences, 24(7), 6015. https://doi.org/10.3390/ijms24076015

Francisco, M., Doghri, M., & Rodríguez, V. M. (2023). Daytime of leaf wounding determines plant biomass and affect the interplay between growth and defense in Brassica crops. Plant Biology. https://doi.org/10.1111/plb.13530

Secchi, M. A., Fernandez, J. A., Stamm, M. J., Durrett, T., Prasad, P. V., Messina, C. D., & Ciampitti, I. A. (2023). Effects of heat and drought on canola (Brassica napus L.) yield, oil, and protein: A meta-analysis. Field Crops Research, 293, 108848. https://doi.org/10.1016/j.fcr.2023.108848

Rivelli, G. M., Gomez, N. V., Mantese, A. I., Miralles, D. J., Abeledo, L. G., & Rondanini, D. P. (2023). Photothermal Quotient Describes the Combined Effects of Heat and Shade Stresses on Canola Seed Productivity. Seeds, 2(1), 149-164. https://doi.org/10.3390/seeds2010012

Huang, R., Yu, H., Yang, Y., Liu, H., Wu, X., Liu, Z., ... & Wang, H. (2023). Effects of Heat Stress during Seed Filling Stage on Brassica napus Seed Oil Accumulation and Chlorophyll Fluorescence Characteristics. Phyton (0031-9457), 92(2). REFERENCE

Delamare, J., Brunel-Muguet, S., Morvan-Bertrand, A., Cantat, O., Firmin, S., Trinsoutrot-Gattin, I., ... & Personeni, E. (2023). Thermopriming effects on root morphological traits and root exudation during the reproductive phase in two species with contrasting strategies: Brassica napus (L.) and Camelina sativa (L.) Crantz. Environmental and Experimental Botany, 210, 105318. https://doi.org/10.1016/j.envexpbot.2023.105318

OSMAN, U. Y., & İLBAŞ, A. İ. (2023). The Effects of Salinity on Germination and Seedling Growth of Some Canola Varieties. Environmental Toxicology and Ecology, 3(1), 11-21. https://dergipark.org.tr/en/pub/etoxec/issue/77165/1255622

Kopecká, R., Kameniarová, M., Černý, M., Brzobohatý, B., & Novák, J. (2023). Abiotic Stress in Crop Production. International Journal of Molecular Sciences, 24(7), 6603. https://doi.org/10.3390/ijms24076603

Zheng, W., Wu, L., Sun, M., Li, J., Ma, J., Li, Y., ... & Yu, Y. (2023). Exogenous application of 5-aminolevulinic acid Improves Chilling Tolerance in Rapeseed (Brassica napus L.) Seedlings. https://doi.org/10.21203/rs.3.rs-2837181/v1

Qin, M., Li, H., Guo, Z., Zhu, Y., Wang, R., Zhang, M., ... & Xu, A. (2023). Phenotypic damage and transcriptomic responses of flower buds in rapeseed (Brassica napus L.) under low-temperature stress. Industrial Crops and Products, 198, 116669. https://doi.org/10.1016/j.indcrop.2023.116669

Chen, K., Yin, Y., Ding, Y., Chao, H., & Li, M. (2023). Characterization of Oil Body and Starch Granule Dynamics in Developing Seeds of Brassica napus. International Journal of Molecular Sciences, 24(4), 4201. https://doi.org/10.3390/ijms24044201

Singh, S. K., Chakrabarty, S. K., Kumar, M., Prakash, K., & Kumari, S. (2023). Response of Early, Timely & Late Genotypes of Brassica sps. Grown under Different Temperature Conditions for Oil Content & Fatty Acid Composition. International Journal of Plant & Soil Science, 35(3), 170-179. https://doi.org/10.9734/ijpss/2023/v35i32789

Wang, C., Yang, J., Chen, W. et al. Contribution of the leaf and silique photosynthesis to the seeds yield and quality of oilseed rape (Brassica napus L.) in reproductive stage. Sci Rep 13, 4721 (2023). https://doi.org/10.1038/s41598-023-31872-6

Jedličková, V., Hejret, V., Demko, M. et al. Transcriptome analysis of thermomorphogenesis in ovules and during early seed development in Brassica napus. BMC Genomics 24, 236 (2023). https://doi.org/10.1186/s12864-023-09316-2

Zhai, L., Abdalla, A., Sun, D., Zhou, Y. A., Zhou, W., & Cen, H. (2023). Spatial heterogeneity analysis of silique chlorophyll a fluorescence-based photosynthetic traits for rapeseed yield and quality assessment. Computers and Electronics in Agriculture, 209, 107829. https://doi.org/10.1016/j.compag.2023.107829

Liu, J., Zhang, K., Bi, J., Yu, X., Luo, L., & Hu, L. (2023). Mesophyll conductance and N allocation co-explained the variation in photosynthesis in two canola genotypes under contrasting nitrogen supply. Frontiers in Plant Science, 14, 1171331. https://doi.org/10.3389/fpls.2023.1171331

Hu, Y., Javed, H.H., Du, YL. et al. Improving Lignin Metabolism, Lodging Resistance, and Yield of Rapeseed (Brassica napus L.) by Applying Straw-Fermented Fertilizer. J Soil Sci Plant Nutr 23, 2832–2848 (2023). https://doi.org/10.1007/s42729-023-01238-y

Zhan, N., Xu, K., Ji, G., Yan, G., Chen, B., Wu, X., & Cai, G. (2023). Research Progress in High-Efficiency Utilization of Nitrogen in Rapeseed. International Journal of Molecular Sciences, 24(9), 7752. https://doi.org/10.3390/ijms24097752

Nan, Yunyou and He, Huiying and Xie, Yuyu and Li, Congcong and Atif, Ayub and Hui, Jing and Tian, Hui and yajun, Gao, The Responses of Genotypes with Contrasting Nute to Exogenous Aba During the Flowering Stage in Brassica Napus. Available at SSRN https://ssrn.com/abstract=4481824 or http://dx.doi.org/10.2139/ssrn.4481824

Wang, L., Zheng, J., Zhou, G., Li, J., Qian, C., Lin, G., ... & Zuo, Q. (2023). Moderate nitrogen application improved salt tolerance by enhancing photosynthesis, antioxidants, and osmotic adjustment in rapeseed (Brassica napus L.). Frontiers in Plant Science, 14, 1196319. https://doi.org/10.3389/fpls.2023.1196319

Krysa, M., Susniak, K., Kubas, A., Kidaj, D., & Sroka-Bartnicka, A. (2023). MALDI MSI and Raman Spectroscopy Application in the Analysis of the Structural Components and Flavonoids in Brassica napus Stem. Metabolites, 13(6), 687. https://doi.org/10.3390/metabo13060687

Xu, Dongmei and Zhao, Mengting and Li, Jun and Zhou, Shanshan and Li, Ke and Niu, Lili and Zhao, Lu, Analysis of the Effects of Sulfamethoxazole on the Secondary Metabolites and Antioxidants in Oilseed Rape (Brassica Napus L.) and the Underlying Mechanisms. Available at SSRN https://ssrn.com/abstract=4463215 or http://dx.doi.org/10.2139/ssrn.4463215

Ganeva, Dessislava and Tallec, T. and Brut, Aurore and Prikaziuk, Egor and Tomelleri, Enrico and Koren, Gerbrand and Verrelst, Jochem and Katja, Berger and Graf, Lukas Valentin and Belda, Santiago and Cai, Zhanzhang and Silva, Cláudio Figueira, In-Situ Crop Phenology Data of Major European Crop Types from France and Bulgaria at a Field Level. Available at SSRN https://ssrn.com/abstract=4439227 or http://dx.doi.org/10.2139/ssrn.4439227

Lili, Z. E. N. G., & Junsong, J. I. A. N. G. (2023). Construction and Validation of Critical Phosphorus Concentration Dilution Curve Model in Rape. Journal of Henan Agricultural Sciences, 52(4), 51. (Chinese, English abstract)http://www.hnnykx.org.cn/EN/abstract/abstract9237.shtml



Yang, H. C., Yuan, H. Y., Wang, Y. L., Li, Y., & Yin, Z. Q. Rape seedling density estimation in‐field conditions based on improved multi‐column convolutional neural network. Agronomy Journal. https://doi.org/10.1002/agj2.21333

Xia, L., & Zhang, P. (2023). Remote sensing estimation of chlorophyll content in rape leaves in Weibei dryland region of China. https://doi.org/10.21203/rs.3.rs-2675708/v1

Li, W., Weiss, M., Garric, B., Champolivier, L., Jiang, J., Wu, W., & Baret, F. (2023). Map-ping Crop Leaf Area Index and Canopy Chlorophyll Content Using UAV Multispectral Im-agery: Impacts of Illuminations and Distribution of Input Variables. Remote Sensing, 15(6), 1539. https://doi.org/10.3390/rs15061539

Li, F., Li, X., Huang, H., Xiang, H., Guan, C., & Guan, M. (2023). An Image Processing Method for Measuring the Surface Area of Rapeseed Pods. Applied Sciences, 13(8), 5129. https://doi.org/10.3390/app13085129



Sun, Y., Zhang, Y., Hou, Y., Gong, H., Pang, Y., Ge, X., & Li, M. (2023). Molecularly imprinted polymers based on calcined rape pollen and deep eutectic solvents for efficient sinapic acid extraction from rapeseed meal extract. Food Chemistry, 416, 135811. https://doi.org/10.1016/j.foodchem.2023.135811

Cisneros-Yupanqui, M., Chalova, V. I., Kalaydzhiev, H. R., Mihaylova, D., Krastanov, A. I., & Lante, A. (2023). Ultrasound-assisted extraction of antioxidant bioactive compounds from wastes of rapeseed industry and their application in delaying rapeseed oil oxidation. Environmental Technology & Innovation, 30, 103081. https://doi.org/10.1016/j.eti.2023.103081

Liu, P., Gong, Y., Yang, C., Ledesma-Amaro, R., Park, Y. K., Deng, S., ... & Chen, W. (2023). Biorefining of rapeseed meal: A new and sustainable strategy for improving Cr (VI) biosorption on residual wastes from agricultural byproducts after phenolic extraction. Waste Management, 165, 70-81. https://doi.org/10.1016/j.wasman.2023.04.024

Liang, Q., Xiong, W., Zhou, Q., Cui, C., Xu, X., Zhao, L., ... & Yao, Y. (2023). Glucosinolates or erucic acid, which one contributes more to volatile flavor of fragrant rapeseed oil?. Food Chemistry, 412, 135594. https://doi.org/10.1016/j.foodchem.2023.135594

Drabińska, N., Siger, A., & Jeleń, H. H. (2023). Metabolic Changes during Sprouting of Rapeseed and Their Consequences for the Volatilome of Cold‐Pressed Oil. European Journal of Lipid Science and Technology, 2200181. https://doi.org/10.1002/ejlt.202200181

Zhang, Y., Zhang, X., Qu, Z., Zhang, N., Li, Q., Gao, Y., & Yu, X. (2023). Changes in the physicochemical characteristics and lipid concomitant of rapeseed oil during germination. International Journal of Food Science & Technology. https://doi.org/10.1111/ijfs.16433

Cao, L., Jia, P., Liu, H., Kang, S., Jiang, S., & Pang, M. (2023). Effects of High-Canolol Phenolic Extracts on Fragrant Rapeseed Oil Quality and Flavor Compounds during Frying. Foods, 12(4), 827. https://doi.org/10.3390/foods12040827

Peng, L., Yang, C., Wang, C., Xie, Q., Gao, Y., Liu, S., ... & Zhou, Y. (2023). Effects of deodorization on the content of polycyclic aromatic hydrocarbons (PAHs), 3-monochloropropane-1, 2-diol esters (3-MCPDE) and glycidyl esters (GE) in rapeseed oil using ethanol steam distillation at low temperature. Food Chemistry, 413, 135616. https://doi.org/10.1016/j.foodchem.2023.135616

Danthine, S., Closset, S., Maes, J., Mascrez, S., Blecker, C., Purcaro, G., & Gibon, V. (2023, May). Enzymatic Interesterification to produce rapeseed oil-based zero-trans and dialkylketones-free fats. In 2023 Annual Meeting & Expo. https://hdl.handle.net/2268/304413

Gentès, Marie-claude and Giroux, Hélène J. and Britten, Michel, Effects of Milk Fat Substitution by Canola Oil on the Properties of High-Fat High‑Protein Yogurt. Available at SSRN https://ssrn.com/abstract=4353510 or http://dx.doi.org/10.2139/ssrn.4353510

Giroux, H. J., Britten, M., & Gentès, M. C. (2023). Effects of milk fat substitution by canola oil on the properties of high-fat high-protein yoghurt. International Dairy Journal, 142, 105653. https://doi.org/10.1016/j.idairyj.2023.105653

Di Lena, G., Schwarze, A. K., Lucarini, M., Gabrielli, P., Aguzzi, A., Caproni, R., ... & Rusu, A. (2023). Application of Rapeseed Meal Protein Isolate as a Supplement to Texture-Modified Food for the Elderly. Foods, 12(6), 1326. https://doi.org/10.3390/foods12061326

Eichhorn, M., Kastner, H., Weissbrodt, J., & Drusch, S. (2023). Impact of process conditions and type of protein on conjugate formation with pectin by vacuum drying. Food Hydrocolloids, 139, 108517. https://doi.org/10.1016/j.foodhyd.2023.108517

Bermejo-Cruz, M., Osorio-Ruiz, A., Rodríguez-Canto, W., Betancur-Ancona, D., Martínez-Ayala, A., & Chel-Guerrero, L. (2023). Antioxidant potential ofprotein hydrolysates from canola (Brassica napus L.) seeds. Biocatalysis and Agricultural Biotechnology, 50, 102687. https://doi.org/10.1016/j.bcab.2023.102687

Li, C., Shi, D., Stone, A. K., Wanasundara, J. P., Tanaka, T., & Nickerson, M. T. (2023). Effect of canola meal fermentation and protein extraction method on the functional properties of resulting protein products. Journal of the American Oil Chemists' Society. https://doi.org/10.1002/aocs.12701

Zhang, M., Wang, O., Cai, S., Zhao, L., & Zhao, L. (2023). Composition, functional properties, health benefits and applications of oilseed proteins: A systematic review. Food Research International, 113061.https://doi.org/10.1016/j.foodres.2023.113061

Wanasundara, J., Tanaka, T., & Warnakulasuriya, S. (2023). Canola meal valorization via hydrolysis for amino acid generation. https://doi.org/10.22541/au.168620691.16061325/v1

Kraljić, K., Škevin, D., Čukelj Mustač, N., Benković, M., Drakula, S., Balbino, S., ... & Ćurić, D. (2023). Influence of Cryogenic Grinding on the Nutritional and Antinutritional Components of Rapeseed Cake. Applied Sciences, 13(10), 5841. https://doi.org/10.3390/app13105841

Betchem, Garba and Ma, Haile and Dabbour, Mokhtar and Tuly, Jamila A. and Laura, Flavorta Billong, Optimization of Fermentation Conditions to Improve the Functional and Structural Characteristics of Rapeseed Meal with a Mutant Bacillus Subtilis Species. Available at SSRN https://ssrn.com/abstract=4455202 or http://dx.doi.org/10.2139/ssrn.4455202

Zhu, X., Chen, Y., Hao, S., Jin, S., & Li, X. (2023). Improvement of the Nutritional Quality of Rapeseed Meal through Solid-State Fermentation with B. subtilis, S. cerevisiae, and B. amyloliquefaciens. Fermentation, 9(5), 492.https://doi.org/10.3390/fermentation9050492

Dygas, D., Liszkowska, W., Steglińska, A., Sulyok, M., Kręgiel, D., & Berłowska, J. (2023). Rapeseed Meal Waste Biomass as a Single-Cell Protein Substrate for Nutritionally-Enhanced Feed Components. Processes, 11(5), 1556. https://doi.org/10.3390/pr11051556

Wilke, V., Gickel, J., & Visscher, C. (2023). Monitoring of Performance-Based Environmental Impacts of Substituting Soybean Meal with Rapeseed Meal in the Rye-Based Diet of Weaned Pigs. Sustainability, 15(3), 2210. https://doi.org/10.3390/su15032210

Muszyński, S., Dajnowska, A., Arciszewski, M. B., Rudyk, H., Śliwa, J., Krakowiak, D., ... & Czech, A. (2023). Effect of Fermented Rapeseed Meal in Feeds for Growing Piglets on Bone Morphological Traits, Mechanical Properties, and Bone Metabolism. Animals, 13(6), 1080. https://doi.org/10.3390/ani13061080

Czech, A., Wlazło, Ł., Łukaszewicz, M., Florek, M., & Nowakowicz-Dębek, B. (2023). Fermented rapeseed meal enhances the digestibility of protein and macro-and microminerals and improves the performance of weaner pigs. Animal Feed Science and Technology, 300, 115656. https://doi.org/10.1016/j.anifeedsci.2023.115656

Konkol, D., Jonuzi, E., Popiela, E., Sierżant, K., Korzeniowska, M., Leicht, K., ... & Korczyński, M. (2023). Influence of solid state fermentation with Bacillus subtilis 67 strain on the nutritional value of rapeseed meal and its effects on performance and meat quality of broiler chickens. Poultry Science, 102(7), 102742. https://doi.org/10.1016/j.psj.2023.102742

Zaworska-Zakrzewska, A., Kasprowicz-Potocka, M., Kierończyk, B., & Józefiak, D. (2023). The Effect of Solid-State Fermentation on the Nutritive Value of Rapeseed Cakes and Performance of Broiler Chickens. Fermentation, 9(5), 435. https://doi.org/10.3390/fermentation9050435

Hosseinpoor, L., Navidshad, B., Faseleh Jahromi, M. et al. The Antioxidant Properties of Bioactive Peptides Derived from Enzymatic Hydrolyzed or Fermented Canola Meal and Its Effects on Broiler Chickens. Int J Pept Res Ther 29, 40 (2023). https://doi.org/10.1007/s10989-023-10509-2

Orlich, M., Drażbo, A., Ognik, K., Rogiewicz, A., & Juśkiewicz, J. The effect of raw, hydrobarothermally treated and fermented rapeseed cake on plasma biochemical parameters, total tract digestibility and gut function in laying hens. Annals of Animal Science. https://doi.org/10.2478/aoas-2023-0040

Guilbaud, T., Martin, N., Lambert, W., Grandmaison, J. L. C., & Bourgeat, E. (2023). Assessment of the impact of a decrease in crude protein content in monogastric feed on oilseeds meals and legumes, prospective approach. OCL, 30, 7. https://doi.org/10.1051/ocl/2023005

Rehemujiang H, Yusuf HA, Ma T, Diao Q, Kong L, Kang L and Tu Y (2023) Fermented cottonseed and rapeseed meals outperform soybean meal in improving performance, rumen fermentation, and bacterial composition in Hu sheep. Front. Microbiol. 14:1119887. https://doi.org/10.3389/fmicb.2023.1119887

Broudiscou, L. P., Quinsac, A., Berthelot, V., Carré, P., Dauguet, S., & Peyronnet, C. (2023). Differential effects of rapeseed, sunflower and linseed oils on rumen microbial functions in dual effluent fermenters on maize silage-based diet. OCL, 30, 5. https://doi.org/10.1051/ocl/2023003

Gao, M., Cieślak, A., Huang, H., Gogulski, M., Petrič, D., Ruska, D., ... & Szumacher-Strabel, M. (2023). Effects of raw and fermented rapeseed cake on ruminal fermentation, methane emission, and milk production in lactating dairy cows. Animal Feed Science and Technology, 300, 115644. https://doi.org/10.1016/j.anifeedsci.2023.115644

Farivar, F., Mostafalou, Y., Gharehbash, A. M., & Khanahmadi, A. (2023). The effect of urea processed canola straw on nutrients digestibility, growth performance and blood parameters of Dalagh rams. Journal of Ruminant Research, 11(1), 93-108. https://doi.org/10.22069/ejrr.2022.20596.1864

Kang, P., Hang, Y., Chen, C., Pan, Y., Wang, Q., & Hua, X. (2023). Effects of replacing fishmeal with rapeseed meal and dietary condensed tannins on antioxidant capacity, immunity, and hepatic and intestinal health of largemouth bass (Micropterus salmoides). Aquaculture Reports, 30, 101548 https://doi.org/10.1016/j.aqrep.2023.101548

Guan, L., Zhuo, L., Tian, H., Li, C., Li, J., Meng, Y., & Ma, R. (2023). Canola oil substitution doesn't affect growth but alters fillet quality of triploid rainbow trout. Aquaculture, 569, 739385. https://doi.org/10.1016/j.aquaculture.2023.739385

Davis, B.A., Devine, M.D. Evaluation of long-chain omega-3 canola oil on Atlantic salmon growth, performance, and essential fatty acid tissue accretion across the life cycle: a review. Aquacult Int (2023). https://doi.org/10.1007/s10499-023-01099-3

Ranjan, A., Welz, P.J. & Mthethwa, T. Investigation of an effective acid pre-treatment method for the valorisation of Canola fines. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-03946-y

Dai, Y., Chen, D. H., Lei, Q., Ren, X. L., Li, C. H., Zhang, J., & Chang, H. J. Effect of rapeseed oil and β‐cyclodextrin coatings on the quality of eggs in shell. International Journal of Food Science & Technology. https://doi.org/10.1111/ijfs.16444

Kosolapova, S. M., Smal, M. S., Rudko, V. A., & Pyagay, I. N. (2023). A New Approach for Synthesizing Fatty Acid Esters from Linoleic-Type Vegetable Oil. Processes, 11(5), 1534. https://doi.org/10.3390/pr11051534

Almutairi, A. W., Abomohra, A., & Elsayed, M. (2023). A closed-loop approach for enhanced biodiesel recovery from rapeseed biodiesel-based byproducts through integrated glycerol recycling by black soldier fly larvae. Journal of Cleaner Production, 409, 137236. https://doi.org/10.1016/j.jclepro.2023.137236

Bojanowska, M. (2023). Handling and transportation properties of rapeseed biomass as affected by particle size. 74 Scientific Journals of the Maritime University of Szczecin, (74). https://repository.am.szczecin.pl/handle/123456789/2772

Silva, M.C.F.e., da Silva Fontes, L., Barbosa, D.R.e. et al. Insecticidal activity of fixed oils on Zabrotes subfasciatus (Boheman) (Coleoptera: Chrysomelidae) in common bean stored. Int J Trop Insect Sci 43, 961–969 (2023). https://doi.org/10.1007/s42690-023-01007-5



Guriec, N., Le Foll, C., & Delarue, J. (2023). Long-chain n-3 PUFA given before and throughout gestation and lactation in rats prevent high-fat diet-induced insulin resistance in male offspring in a tissue-specific manner. British Journal of Nutrition, 1-16. https://doi.org/10.1017/S000711452300017X

Shen, J., Liu, Y., Wang, X., Bai, J., Lin, L., Luo, F., & Zhong, H. (2023). A Comprehensive Review of Health-Benefiting Components in Rapeseed Oil. Nutrients, 15(4), 999. https://doi.org/10.3390/nu15040999

Tessier, R., Calvez, J., Airinei, G., Khodorova, N., Dauguet, S., Galet, O., ... & Gaudichon, C. (2023). Digestive and metabolic bioavailability in healthy humans of 15N-labeled rapeseed and flaxseed protein incorporated in biscuits. The American Journal of Clinical Nutrition, 117(5), 896-902. https://doi.org/10.1016/j.ajcnut.2023.02.020

Duan, X., Dong, Y., Zhang, M., Li, Z., Bu, G., & Chen, F. (2023). Identification and molecular interactions of novel ACE inhibitory peptides from rapeseed protein. Food Chemistry, 422, 136085. https://doi.org/10.1016/j.foodchem.2023.136085

Yang, F., Huang, J., He, H., Ju, X., Ji, Y., Deng, F., ... & He, R. (2023). Study on the hypolipidemic activity of rapeseed protein-derived peptides. Food Chemistry, 423, 136315. https://doi.org/10.1016/j.foodchem.2023.136315

Goyal, A., Dubey, N., Verma, A., & Agrawal, A. (2023). Erucic Acid: A Possible Therapeutic Agent for Neurodegenerative Diseases. Current Molecular Medicine. https://doi.org/10.2174/1566524023666230509123536

Zhang, J., Yao, Y., Xu, F., Yuan, Q., Ju, X., & Wang, L. (2023). Anti-Inflammatory and Transepithelial Transport Activities of Rapeseed (Brassica napus)Napin-Derived Dipeptide Thr-Leu in Caco-2 and RAW264. 7 Cocultures. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/acs.jafc.3c00227

Patel, D., Munhoz, J., Goruk, S. et al. Maternal diet supplementation with high-docosahexaenoic-acid canola oil, along with arachidonic acid, promotes immune system development in allergy-prone BALB/c mouse offspring at 3 weeks of age. Eur J Nutr (2023). https://doi.org/10.1007/s00394-023-03160-6



Oskouei, B., Sadeghi, L., & Doorooshi, F. (2023). Optimization Identification of wild mustard(Sinapis arvensis L.) seeds in rapeseed seed lots by morphological, chemical and Molecular methods. Iranian Journal of Seed Science and Technology, 11(4), 85-96. https://doi.org/10.22092/ijsst.2022.357359.1419

Kozub, A., Nikolaichuk, H., Przykaza, K., Tomaszewska-Gras, J., & Fornal, E. (2023). Lipidomic characteristics of three edible cold-pressed oils by LC/Q-TOF for simple quality and authenticity assurance. Food Chemistry, 415, 135761. https://doi.org/10.1016/j.foodchem.2023.135761

Majcher, J., Kafarski, M., Szypłowska, A., Wilczek, A., Lewandowski, A., Skierucha, W., & Staszek, K. (2023). Prototype of a sensor for measuring moisture of a single rapeseed (Brassica napus L.) using microwave reflectometry. Measurement, 214, 112787. https://doi.org/10.1016/j.measurement.2023.112787

Ali Redha, A., Torquati, L., Langston, F., Nash, G. R., Gidley, M. J., & Cozzolino, D. (2023). Determination of glucosinolates and isothiocyanates in glucosinolate-rich vegetables and oilseeds using infrared spectroscopy: A systematic review. Critical Reviews in Food Science and Nutrition, 1-17. https://doi.org/10.1080/10408398.2023.2198015

Zhao, Mingxing and Jiang, Hui and Chen, Quansheng, Identification of Procymidone in Rapeseed Oils Based on Olfactory Visualization Technology. Available at SSRN https://ssrn.com/abstract=4441651 or http://dx.doi.org/10.2139/ssrn.4441651

Tan, Z., Liu, R., & Liu, J. (2023). BR-Net: Band reweighted network for quantitative analysis of rapeseed protein spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 299, 122828. https://doi.org/10.1016/j.saa.2023.122828

Zhang, Y., Stöppelmann, F., Zhu, L., Liang, J., Rigling, M., Wang, X., ... & Zhang, Y. (2023). A comparative study on flavor trapping techniques from the viewpoint of odorants of hot-pressed rapeseed oil. Food Chemistry, 136617. https://doi.org/10.1016/j.foodchem.2023.136617



Keadle, S. B., Sykes, V. R., Sams, C. E., Yin, X., Larson, J. A., & Grant, J. F. (2023). National Winter Oilseeds Review for Potential in the US Mid‐South: Pennycress, Canola, & Camelina. Agronomy Journal. https://doi.org/10.1002/agj2.21317


Upcoming international and national events


17-20 September, 2023, Poznan, Poland: 19th Euro Fed Lipid Congress and Expo

Early Bird Registration deadline: 02 August 2023



24-27 September, 2023: 16th International Rapeseed Congress, Sydney, Australia



23-24 October 2023, Frankfurt, Germany: The Future of Oilseeds: Prospects for Plant based Proteins?

Information and Registration:http://www.dgfett.de/meetings/aktuell/frankfurt2023


5-7 December 2023, Calgary, Canada: Canola Week 2023

The conference will be presented in a hybrid format, allowing attendees to tune in remotely or attend in person.



10-11 September, 2024, Dresden, Germany: 19th Meeting of the IOBC-WPRS WG “Integrated Control in Oilseed Crops (ICOC)” & Clubroot Workshop 12 September, 2024



We invite you to share information with the rapeseed/canola community: let us know

the scientific projects, events organized in your country, crop performances

or any information of interest in rapeseed/canola R&D.

Contact GCIRC News:

Etienne Pilorgé, GCIRC Secretary-Treasurer: e.pilorge(at)terresinovia.fr

Contact GCIRC: contact(at)gcirc.org

Display PDF

Back to list

In accordance with the General Data Protection Regulations 2016/679 of 27 April 2016 (“GDPR”) and the amended Law No. 78-17 of 6 January 1978 on data processing, data files and individual liberties (“Data Protection Act”), you have the right to access, rectify and delete your personal data, as well as the right to object on legitimate grounds to the processing of such data and the right to define guidelines on what becomes of such data after your death.

If you don't want to receive our newsletter anymore, click here : Unsubscribe.